Optimal. Leaf size=27 \[ -x \log (25)+\frac {1}{2} \left (e^{2 x}+x+\frac {3}{\log (6+x+\log (2))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 33, normalized size of antiderivative = 1.22, number of steps used = 6, number of rules used = 5, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6688, 2194, 2390, 2302, 30} \begin {gather*} \frac {e^{2 x}}{2}+\frac {1}{2} x (1-2 \log (25))+\frac {3}{2 \log (x+6+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2194
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{2}+e^{2 x}-\log (25)-\frac {3}{2 (6+x+\log (2)) \log ^2(6+x+\log (2))}\right ) \, dx\\ &=\frac {1}{2} x (1-2 \log (25))-\frac {3}{2} \int \frac {1}{(6+x+\log (2)) \log ^2(6+x+\log (2))} \, dx+\int e^{2 x} \, dx\\ &=\frac {e^{2 x}}{2}+\frac {1}{2} x (1-2 \log (25))-\frac {3}{2} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,6+x+\log (2)\right )\\ &=\frac {e^{2 x}}{2}+\frac {1}{2} x (1-2 \log (25))-\frac {3}{2} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (6+x+\log (2))\right )\\ &=\frac {e^{2 x}}{2}+\frac {1}{2} x (1-2 \log (25))+\frac {3}{2 \log (6+x+\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 32, normalized size = 1.19 \begin {gather*} \frac {e^{2 x}}{2}+\frac {x}{2}-x \log (25)+\frac {3}{2 \log (6+x+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 34, normalized size = 1.26 \begin {gather*} -\frac {{\left (4 \, x \log \relax (5) - x - e^{\left (2 \, x\right )}\right )} \log \left (x + \log \relax (2) + 6\right ) - 3}{2 \, \log \left (x + \log \relax (2) + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.67, size = 44, normalized size = 1.63 \begin {gather*} -\frac {4 \, x \log \relax (5) \log \left (x + \log \relax (2) + 6\right ) - x \log \left (x + \log \relax (2) + 6\right ) - e^{\left (2 \, x\right )} \log \left (x + \log \relax (2) + 6\right ) - 3}{2 \, \log \left (x + \log \relax (2) + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 26, normalized size = 0.96
method | result | size |
default | \(\frac {3}{2 \ln \left (\ln \relax (2)+x +6\right )}+\frac {{\mathrm e}^{2 x}}{2}+\frac {x}{2}-2 x \ln \relax (5)\) | \(26\) |
risch | \(\frac {3}{2 \ln \left (\ln \relax (2)+x +6\right )}+\frac {{\mathrm e}^{2 x}}{2}+\frac {x}{2}-2 x \ln \relax (5)\) | \(26\) |
norman | \(\frac {\frac {3}{2}+\left (-2 \ln \relax (5)+\frac {1}{2}\right ) x \ln \left (\ln \relax (2)+x +6\right )+\frac {{\mathrm e}^{2 x} \ln \left (\ln \relax (2)+x +6\right )}{2}}{\ln \left (\ln \relax (2)+x +6\right )}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -e^{\left (-2 \, \log \relax (2) - 12\right )} E_{1}\left (-2 \, x - 2 \, \log \relax (2) - 12\right ) \log \relax (2) - 2 \, \log \relax (5) \log \relax (2) \log \left (x + \log \relax (2) + 6\right ) - 6 \, e^{\left (-2 \, \log \relax (2) - 12\right )} E_{1}\left (-2 \, x - 2 \, \log \relax (2) - 12\right ) - {\left (\log \relax (2) + 6\right )} \int \frac {e^{\left (2 \, x\right )}}{2 \, {\left (x^{2} + 2 \, x {\left (\log \relax (2) + 6\right )} + \log \relax (2)^{2} + 12 \, \log \relax (2) + 36\right )}}\,{d x} + 2 \, {\left ({\left (\log \relax (2) + 6\right )} \log \left (x + \log \relax (2) + 6\right ) - x\right )} \log \relax (5) - \frac {1}{2} \, {\left (\log \relax (2) + 6\right )} \log \left (x + \log \relax (2) + 6\right ) - 12 \, \log \relax (5) \log \left (x + \log \relax (2) + 6\right ) + \frac {1}{2} \, \log \relax (2) \log \left (x + \log \relax (2) + 6\right ) + \frac {1}{2} \, x + \frac {x e^{\left (2 \, x\right )}}{2 \, {\left (x + \log \relax (2) + 6\right )}} + \frac {3}{2 \, \log \left (x + \log \relax (2) + 6\right )} + 3 \, \log \left (x + \log \relax (2) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.51, size = 38, normalized size = 1.41 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}}{2}-x\,\left (\ln \left (25\right )-\frac {1}{2}\right )+\frac {3\,\left (x+\ln \relax (2)+6\right )}{\ln \left (x+\ln \relax (2)+6\right )\,\left (2\,x+\ln \relax (4)+12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 27, normalized size = 1.00 \begin {gather*} x \left (\frac {1}{2} - 2 \log {\relax (5 )}\right ) + \frac {e^{2 x}}{2} + \frac {3}{2 \log {\left (x + \log {\relax (2 )} + 6 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________