Optimal. Leaf size=22 \[ \frac {1}{10} e^{-3-x-x^3 \left (\frac {1}{4}+x\right )} x \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 54, normalized size of antiderivative = 2.45, number of steps used = 4, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 2274, 2288} \begin {gather*} \frac {e^{\frac {1}{4} \left (-4 x^4-x^3-12\right )-x} \left (16 x^4+3 x^3+4 x\right )}{10 \left (16 x^3+3 x^2+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{\frac {1}{4} \left (-12-x^3-4 x^4+4 \log \left (\frac {e^{-x} x}{10}\right )\right )} \left (4-4 x-3 x^3-16 x^4\right )}{x} \, dx\\ &=\frac {1}{4} \int \frac {1}{10} e^{-x+\frac {1}{4} \left (-12-x^3-4 x^4\right )} \left (4-4 x-3 x^3-16 x^4\right ) \, dx\\ &=\frac {1}{40} \int e^{-x+\frac {1}{4} \left (-12-x^3-4 x^4\right )} \left (4-4 x-3 x^3-16 x^4\right ) \, dx\\ &=\frac {e^{-x+\frac {1}{4} \left (-12-x^3-4 x^4\right )} \left (4 x+3 x^3+16 x^4\right )}{10 \left (4+3 x^2+16 x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 1.09 \begin {gather*} \frac {1}{10} e^{-3-x-\frac {x^3}{4}-x^4} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 21, normalized size = 0.95 \begin {gather*} e^{\left (-x^{4} - \frac {1}{4} \, x^{3} + \log \left (\frac {1}{10} \, x e^{\left (-x\right )}\right ) - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.95 \begin {gather*} e^{\left (-x^{4} - \frac {1}{4} \, x^{3} + \log \left (\frac {1}{10} \, x e^{\left (-x\right )}\right ) - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 1.00
method | result | size |
gosper | \({\mathrm e}^{\ln \left (\frac {x \,{\mathrm e}^{-x}}{10}\right )-x^{4}-\frac {x^{3}}{4}-3}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 19, normalized size = 0.86 \begin {gather*} \frac {1}{10} \, x e^{\left (-x^{4} - \frac {1}{4} \, x^{3} - x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.47, size = 21, normalized size = 0.95 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{-x^4}\,{\mathrm {e}}^{-\frac {x^3}{4}}}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.86 \begin {gather*} \frac {x e^{- x} e^{- x^{4} - \frac {x^{3}}{4} - 3}}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________