Optimal. Leaf size=20 \[ 1-e^x+\frac {16}{x^2}+x+\frac {x \log (2)}{e} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 14, 2194} \begin {gather*} \frac {16}{x^2}-e^x+\frac {x (e+\log (2))}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-e^{1+x} x^3+e \left (-32+x^3\right )+x^3 \log (2)}{x^3} \, dx}{e}\\ &=\frac {\int \left (-e^{1+x}+\frac {-32 e+x^3 (e+\log (2))}{x^3}\right ) \, dx}{e}\\ &=-\frac {\int e^{1+x} \, dx}{e}+\frac {\int \frac {-32 e+x^3 (e+\log (2))}{x^3} \, dx}{e}\\ &=-e^x+\frac {\int \left (-\frac {32 e}{x^3}+e \left (1+\frac {\log (2)}{e}\right )\right ) \, dx}{e}\\ &=-e^x+\frac {16}{x^2}+\frac {x (e+\log (2))}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} -e^x+\frac {16}{x^2}+x+\frac {x \log (2)}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 30, normalized size = 1.50 \begin {gather*} \frac {{\left (x^{3} \log \relax (2) - x^{2} e^{\left (x + 1\right )} + {\left (x^{3} + 16\right )} e\right )} e^{\left (-1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 32, normalized size = 1.60 \begin {gather*} \frac {{\left (x^{3} e + x^{3} \log \relax (2) - x^{2} e^{\left (x + 1\right )} + 16 \, e\right )} e^{\left (-1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 1.15
method | result | size |
risch | \({\mathrm e}^{-1} x \,{\mathrm e}+{\mathrm e}^{-1} x \ln \relax (2)+\frac {16}{x^{2}}-{\mathrm e}^{x}\) | \(23\) |
norman | \(\frac {16+\left ({\mathrm e}+\ln \relax (2)\right ) {\mathrm e}^{-1} x^{3}-{\mathrm e}^{x} x^{2}}{x^{2}}\) | \(27\) |
default | \({\mathrm e}^{-1} \left (\frac {16 \,{\mathrm e}}{x^{2}}-{\mathrm e} \,{\mathrm e}^{x}+x \,{\mathrm e}+x \ln \relax (2)\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 1.25 \begin {gather*} {\left (x e + x \log \relax (2) + \frac {16 \, e}{x^{2}} - e^{\left (x + 1\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 19, normalized size = 0.95 \begin {gather*} \frac {16}{x^2}-{\mathrm {e}}^x+x\,{\mathrm {e}}^{-1}\,\left (\mathrm {e}+\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 1.10 \begin {gather*} \frac {x \left (\log {\relax (2 )} + e\right ) + \frac {16 e}{x^{2}}}{e} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________