Optimal. Leaf size=29 \[ \frac {1}{2} \left (2+e^{\left (2+\frac {2}{x}\right ) x \left (1+e^{2 x}-\log (x)\right )}\right ) x \]
________________________________________________________________________________________
Rubi [F] time = 1.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{2} \left (2+\exp \left (2+2 x+e^{2 x} (2+2 x)+(-2-2 x) \log (x)\right ) \left (-1+e^{2 x} \left (6 x+4 x^2\right )-2 x \log (x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (2+\exp \left (2+2 x+e^{2 x} (2+2 x)+(-2-2 x) \log (x)\right ) \left (-1+e^{2 x} \left (6 x+4 x^2\right )-2 x \log (x)\right )\right ) \, dx\\ &=x+\frac {1}{2} \int \exp \left (2+2 x+e^{2 x} (2+2 x)+(-2-2 x) \log (x)\right ) \left (-1+e^{2 x} \left (6 x+4 x^2\right )-2 x \log (x)\right ) \, dx\\ &=x+\frac {1}{2} \int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} \left (-1+e^{2 x} \left (6 x+4 x^2\right )-2 x \log (x)\right ) \, dx\\ &=x+\frac {1}{2} \int \left (-e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )}+2 e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x (3+2 x)-2 e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x \log (x)\right ) \, dx\\ &=x-\frac {1}{2} \int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} \, dx+\int e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x (3+2 x) \, dx-\int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x \log (x) \, dx\\ &=x-\frac {1}{2} \int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} \, dx+\int \left (3 e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x+2 e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x^2\right ) \, dx-\int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x \log (x) \, dx\\ &=x-\frac {1}{2} \int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} \, dx+2 \int e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x^2 \, dx+3 \int e^{2 x+2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x \, dx-\int e^{2 (1+x) \left (1+e^{2 x}-\log (x)\right )} x \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 32, normalized size = 1.10 \begin {gather*} x+\frac {1}{2} e^{2+2 x+2 e^{2 x} (1+x)} x^{1-2 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 27, normalized size = 0.93 \begin {gather*} \frac {1}{2} \, x e^{\left (2 \, {\left (x + 1\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x + 1\right )} \log \relax (x) + 2 \, x + 2\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{2} \, {\left (2 \, {\left (2 \, x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} - 2 \, x \log \relax (x) - 1\right )} e^{\left (2 \, {\left (x + 1\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x + 1\right )} \log \relax (x) + 2 \, x + 2\right )} + 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 0.86
method | result | size |
risch | \(\frac {x \,x^{-2 x -2} {\mathrm e}^{2 \left (x +1\right ) \left ({\mathrm e}^{2 x}+1\right )}}{2}+x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 31, normalized size = 1.07 \begin {gather*} x + \frac {e^{\left (2 \, x e^{\left (2 \, x\right )} - 2 \, x \log \relax (x) + 2 \, x + 2 \, e^{\left (2 \, x\right )} + 2\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.44, size = 35, normalized size = 1.21 \begin {gather*} x+\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{2\,x}}}{2\,x^{2\,x}\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 31, normalized size = 1.07 \begin {gather*} \frac {x e^{2 x + \left (- 2 x - 2\right ) \log {\relax (x )} + \left (2 x + 2\right ) e^{2 x} + 2}}{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________