Optimal. Leaf size=30 \[ 5 e^{\frac {1}{9} \left (-1-e^{x (2+\log (2+x))}-x\right )-x} x \]
________________________________________________________________________________________
Rubi [F] time = 4.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} \left (90-55 x-50 x^2+e^{2 x+x \log (2+x)} \left (-20 x-15 x^2+\left (-10 x-5 x^2\right ) \log (2+x)\right )\right )}{18+9 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5}{9} e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} (-9+10 x)-\frac {5}{9} \exp \left (\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )+2 x\right ) x (2+x)^{-1+x} (4+3 x+2 \log (2+x)+x \log (2+x))\right ) \, dx\\ &=-\left (\frac {5}{9} \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} (-9+10 x) \, dx\right )-\frac {5}{9} \int \exp \left (\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )+2 x\right ) x (2+x)^{-1+x} (4+3 x+2 \log (2+x)+x \log (2+x)) \, dx\\ &=-\left (\frac {5}{9} \int \left (-9 e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )}+10 e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} x\right ) \, dx\right )-\frac {5}{9} \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^{-1+x} (4+3 x+2 \log (2+x)+x \log (2+x)) \, dx\\ &=-\left (\frac {5}{9} \int \left (e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^{-1+x} (4+3 x)+e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \log (2+x)\right ) \, dx\right )+5 \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} \, dx-\frac {50}{9} \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} x \, dx\\ &=-\left (\frac {5}{9} \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^{-1+x} (4+3 x) \, dx\right )-\frac {5}{9} \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \log (2+x) \, dx+5 \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} \, dx-\frac {50}{9} \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} x \, dx\\ &=-\left (\frac {5}{9} \int \left (4 e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^{-1+x}+3 e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x^2 (2+x)^{-1+x}\right ) \, dx\right )+\frac {5}{9} \int \frac {\int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \, dx}{2+x} \, dx+5 \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} \, dx-\frac {50}{9} \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} x \, dx-\frac {1}{9} (5 \log (2+x)) \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \, dx\\ &=\frac {5}{9} \int \frac {\int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \, dx}{2+x} \, dx-\frac {5}{3} \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x^2 (2+x)^{-1+x} \, dx-\frac {20}{9} \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^{-1+x} \, dx+5 \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} \, dx-\frac {50}{9} \int e^{\frac {1}{9} \left (-1-e^{2 x+x \log (2+x)}-10 x\right )} x \, dx-\frac {1}{9} (5 \log (2+x)) \int e^{\frac {1}{9} \left (-1+8 x-e^{2 x} (2+x)^x\right )} x (2+x)^x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 28, normalized size = 0.93 \begin {gather*} 5 e^{-\frac {1}{9}-\frac {10 x}{9}-\frac {1}{9} e^{2 x} (2+x)^x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 22, normalized size = 0.73 \begin {gather*} 5 \, x e^{\left (-\frac {10}{9} \, x - \frac {1}{9} \, e^{\left (x \log \left (x + 2\right ) + 2 \, x\right )} - \frac {1}{9}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, {\left (10 \, x^{2} + {\left (3 \, x^{2} + {\left (x^{2} + 2 \, x\right )} \log \left (x + 2\right ) + 4 \, x\right )} e^{\left (x \log \left (x + 2\right ) + 2 \, x\right )} + 11 \, x - 18\right )} e^{\left (-\frac {10}{9} \, x - \frac {1}{9} \, e^{\left (x \log \left (x + 2\right ) + 2 \, x\right )} - \frac {1}{9}\right )}}{9 \, {\left (x + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 21, normalized size = 0.70
method | result | size |
risch | \(5 x \,{\mathrm e}^{-\frac {\left (2+x \right )^{x} {\mathrm e}^{2 x}}{9}-\frac {10 x}{9}-\frac {1}{9}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 5 \, x e^{\left (-\frac {10}{9} \, x - \frac {1}{9} \, e^{\left (x \log \left (x + 2\right ) + 2 \, x\right )} - \frac {1}{9}\right )} + \frac {5}{9} \, \int 0\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.16, size = 21, normalized size = 0.70 \begin {gather*} 5\,x\,{\mathrm {e}}^{-\frac {10\,x}{9}}\,{\mathrm {e}}^{-\frac {1}{9}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{2\,x}\,{\left (x+2\right )}^x}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 53.75, size = 27, normalized size = 0.90 \begin {gather*} 5 x e^{- \frac {10 x}{9} - \frac {e^{x \log {\left (x + 2 \right )} + 2 x}}{9} - \frac {1}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________