Optimal. Leaf size=28 \[ 2+\log \left (e^{-\frac {x}{4 \left (9+\frac {-5+e^5+e^x}{x}\right )}} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100+4 e^{10}+4 e^{2 x}-360 x+334 x^2-9 x^3+e^5 \left (-40+72 x-2 x^2\right )+e^x \left (-40+8 e^5+72 x-2 x^2+x^3\right )}{100 x+4 e^{10} x+4 e^{2 x} x-360 x^2+324 x^3+e^5 \left (-40 x+72 x^2\right )+e^x \left (-40 x+8 e^5 x+72 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100+4 e^{10}+4 e^{2 x}-360 x+334 x^2-9 x^3+e^5 \left (-40+72 x-2 x^2\right )+e^x \left (-40+8 e^5+72 x-2 x^2+x^3\right )}{4 e^{2 x} x+\left (100+4 e^{10}\right ) x-360 x^2+324 x^3+e^5 \left (-40 x+72 x^2\right )+e^x \left (-40 x+8 e^5 x+72 x^2\right )} \, dx\\ &=\int \frac {4 e^{2 x}+100 \left (1+\frac {e^{10}}{25}\right )-360 x+334 x^2-9 x^3+e^5 \left (-40+72 x-2 x^2\right )+e^x \left (-40+8 e^5+72 x-2 x^2+x^3\right )}{4 x \left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {4 e^{2 x}+100 \left (1+\frac {e^{10}}{25}\right )-360 x+334 x^2-9 x^3+e^5 \left (-40+72 x-2 x^2\right )+e^x \left (-40+8 e^5+72 x-2 x^2+x^3\right )}{x \left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {4}{x}+\frac {\left (14-e^5-9 x\right ) x^2}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2}+\frac {(-2+x) x}{e^x-5 \left (1-\frac {e^5}{5}\right )+9 x}\right ) \, dx\\ &=\log (x)+\frac {1}{4} \int \frac {\left (14-e^5-9 x\right ) x^2}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2} \, dx+\frac {1}{4} \int \frac {(-2+x) x}{e^x-5 \left (1-\frac {e^5}{5}\right )+9 x} \, dx\\ &=\log (x)+\frac {1}{4} \int \left (\frac {\left (14-e^5\right ) x^2}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2}-\frac {9 x^3}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2}\right ) \, dx+\frac {1}{4} \int \left (\frac {2 x}{-e^x+5 \left (1-\frac {e^5}{5}\right )-9 x}+\frac {x^2}{e^x-5 \left (1-\frac {e^5}{5}\right )+9 x}\right ) \, dx\\ &=\log (x)+\frac {1}{4} \int \frac {x^2}{e^x-5 \left (1-\frac {e^5}{5}\right )+9 x} \, dx+\frac {1}{2} \int \frac {x}{-e^x+5 \left (1-\frac {e^5}{5}\right )-9 x} \, dx-\frac {9}{4} \int \frac {x^3}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2} \, dx+\frac {1}{4} \left (14-e^5\right ) \int \frac {x^2}{\left (e^x-5 \left (1-\frac {e^5}{5}\right )+9 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 27, normalized size = 0.96 \begin {gather*} \frac {1}{4} \left (-\frac {x^2}{-5+e^5+e^x+9 x}+4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 30, normalized size = 1.07 \begin {gather*} -\frac {x^{2} - 4 \, {\left (9 \, x + e^{5} + e^{x} - 5\right )} \log \relax (x)}{4 \, {\left (9 \, x + e^{5} + e^{x} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 38, normalized size = 1.36 \begin {gather*} -\frac {x^{2} - 36 \, x \log \relax (x) - 4 \, e^{5} \log \relax (x) - 4 \, e^{x} \log \relax (x) + 20 \, \log \relax (x)}{4 \, {\left (9 \, x + e^{5} + e^{x} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 20, normalized size = 0.71
method | result | size |
norman | \(-\frac {x^{2}}{4 \left (9 x -5+{\mathrm e}^{5}+{\mathrm e}^{x}\right )}+\ln \relax (x )\) | \(20\) |
risch | \(-\frac {x^{2}}{4 \left (9 x -5+{\mathrm e}^{5}+{\mathrm e}^{x}\right )}+\ln \relax (x )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 19, normalized size = 0.68 \begin {gather*} -\frac {x^{2}}{4 \, {\left (9 \, x + e^{5} + e^{x} - 5\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.34, size = 42, normalized size = 1.50 \begin {gather*} \ln \relax (x)-\frac {x^2\,{\mathrm {e}}^5-14\,x^2+9\,x^3}{4\,\left (9\,x+{\mathrm {e}}^5-14\right )\,\left (9\,x+{\mathrm {e}}^5+{\mathrm {e}}^x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.71 \begin {gather*} - \frac {x^{2}}{36 x + 4 e^{x} - 20 + 4 e^{5}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________