Optimal. Leaf size=25 \[ x \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 50.98, antiderivative size = 30, normalized size of antiderivative = 1.20, number of steps used = 83, number of rules used = 5, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {6742, 6688, 1850, 2549, 12} \begin {gather*} x \log \left (-\frac {x}{e^{\frac {1}{2} \left (x^3+x\right )} (3-x)-\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1850
Rule 2549
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {6-2 x-x \log (x)+x^2 \log (x)-9 x^3 \log (x)+3 x^4 \log (x)}{2 (-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}+\frac {-6+3 x-x^2+9 x^3-3 x^4-6 \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )+2 x \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )}{2 (-3+x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {6-2 x-x \log (x)+x^2 \log (x)-9 x^3 \log (x)+3 x^4 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx+\frac {1}{2} \int \frac {-6+3 x-x^2+9 x^3-3 x^4-6 \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )+2 x \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )}{-3+x} \, dx\\ &=\frac {1}{2} \int \frac {-6+2 x-x \left (-1+x-9 x^2+3 x^3\right ) \log (x)}{(3-x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx+\frac {1}{2} \int \frac {6-3 x+x^2-9 x^3+3 x^4-2 (-3+x) \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )}{3-x} \, dx\\ &=\frac {1}{2} \int \left (\frac {6}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}-\frac {2 x}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}-\frac {x \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}+\frac {x^2 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}-\frac {9 x^3 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}+\frac {3 x^4 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )}\right ) \, dx+\frac {1}{2} \int \left (\frac {-6+3 x-x^2+9 x^3-3 x^4}{-3+x}+2 \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {-6+3 x-x^2+9 x^3-3 x^4}{-3+x} \, dx-\frac {1}{2} \int \frac {x \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx+\frac {1}{2} \int \frac {x^2 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx+\frac {3}{2} \int \frac {x^4 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx+3 \int \frac {1}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx-\frac {9}{2} \int \frac {x^3 \log (x)}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx-\int \frac {x}{(-3+x) \left (-3 e^{\frac {x}{2}+\frac {x^3}{2}}+e^{\frac {x}{2}+\frac {x^3}{2}} x+\log (x)\right )} \, dx+\int \log \left (\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)}\right ) \, dx\\ &=x \log \left (-\frac {x}{e^{\frac {1}{2} \left (x+x^3\right )} (3-x)-\log (x)}\right )+\frac {1}{2} \int \left (-\frac {6}{-3+x}-x-3 x^3\right ) \, dx-\frac {1}{2} \int \frac {x \log (x)}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx+\frac {1}{2} \int \frac {x^2 \log (x)}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx+\frac {3}{2} \int \frac {x^4 \log (x)}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx+3 \int \frac {1}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx-\frac {9}{2} \int \frac {x^3 \log (x)}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx-\int \frac {x}{(-3+x) \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx-\int -\frac {2+e^{\frac {1}{2} \left (x+x^3\right )} \left (6-3 x+x^2-9 x^3+3 x^4\right )-2 \log (x)}{2 \left (e^{\frac {1}{2} \left (x+x^3\right )} (-3+x)+\log (x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 29, normalized size = 1.16 \begin {gather*} x \log \left (\frac {x}{e^{\frac {x}{2}+\frac {x^3}{2}} (-3+x)+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 24, normalized size = 0.96 \begin {gather*} x \log \left (\frac {x}{{\left (x - 3\right )} e^{\left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x\right )} + \log \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 36, normalized size = 1.44 \begin {gather*} -x \log \left (x e^{\left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x\right )} - 3 \, e^{\left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x\right )} + \log \relax (x)\right ) + x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 261, normalized size = 10.44
method | result | size |
risch | \(-x \ln \left ({\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}\right )+x \ln \relax (x )-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}} x +\ln \relax (x )-3 \,{\mathrm e}^{\frac {x \left (x^{2}+1\right )}{2}}}\right )^{3}}{2}\) | \(261\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 1.04 \begin {gather*} -x \log \left ({\left (x - 3\right )} e^{\left (\frac {1}{2} \, x^{3} + \frac {1}{2} \, x\right )} + \log \relax (x)\right ) + x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.26, size = 24, normalized size = 0.96 \begin {gather*} x\,\ln \left (\frac {x}{\ln \relax (x)+{\mathrm {e}}^{x/2}\,{\mathrm {e}}^{\frac {x^3}{2}}\,\left (x-3\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.84, size = 20, normalized size = 0.80 \begin {gather*} x \log {\left (\frac {x}{\left (x - 3\right ) e^{\frac {x^{3}}{2} + \frac {x}{2}} + \log {\relax (x )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________