Optimal. Leaf size=17 \[ e^{e^{3 \left (e^x-4 x \log (3)\right )} x} \]
________________________________________________________________________________________
Rubi [F] time = 1.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) \left (1+3 e^x x-12 x \log (3)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right )+3 \exp \left (3 e^x+x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) x-12 \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) x \log (3)\right ) \, dx\\ &=3 \int \exp \left (3 e^x+x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) x \, dx-(12 \log (3)) \int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) x \, dx+\int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) \, dx\\ &=3 \int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x+x (1-12 \log (3))\right ) x \, dx-(12 \log (3)) \int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) x \, dx+\int \exp \left (3 e^x+e^{3 e^x-12 x \log (3)} x-12 x \log (3)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 16, normalized size = 0.94 \begin {gather*} e^{3^{-12 x} e^{3 e^x} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 14, normalized size = 0.82 \begin {gather*} e^{\left (x e^{\left (-12 \, x \log \relax (3) + 3 \, e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (3 \, x e^{x} - 12 \, x \log \relax (3) + 1\right )} e^{\left (x e^{\left (-12 \, x \log \relax (3) + 3 \, e^{x}\right )} - 12 \, x \log \relax (3) + 3 \, e^{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 12, normalized size = 0.71
method | result | size |
risch | \({\mathrm e}^{x \,{\mathrm e}^{3 \,{\mathrm e}^{x}} \left (\frac {1}{531441}\right )^{x}}\) | \(12\) |
norman | \({\mathrm e}^{x \,{\mathrm e}^{3 \,{\mathrm e}^{x}-12 x \ln \relax (3)}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 14, normalized size = 0.82 \begin {gather*} e^{\left (x e^{\left (-12 \, x \log \relax (3) + 3 \, e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 15, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{3\,{\mathrm {e}}^x}}{3^{12\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 15, normalized size = 0.88 \begin {gather*} e^{x e^{- 12 x \log {\relax (3 )} + 3 e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________