Optimal. Leaf size=26 \[ \frac {e^6 x^2}{\log ^2\left (x \left (4-x+\left ((-2+x)^2+x\right )^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^6 x^2 \left (-40+100 x-102 x^2+48 x^3-10 x^4+\left (40-50 x+34 x^2-12 x^3+2 x^4\right ) \log \left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )\right )}{\left (20 x-25 x^2+17 x^3-6 x^4+x^5\right ) \log ^3\left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^6 \int \frac {x^2 \left (-40+100 x-102 x^2+48 x^3-10 x^4+\left (40-50 x+34 x^2-12 x^3+2 x^4\right ) \log \left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )\right )}{\left (20 x-25 x^2+17 x^3-6 x^4+x^5\right ) \log ^3\left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )} \, dx\\ &=e^6 \int \frac {x \left (-40+100 x-102 x^2+48 x^3-10 x^4+\left (40-50 x+34 x^2-12 x^3+2 x^4\right ) \log \left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )\right )}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )} \, dx\\ &=e^6 \int \frac {x \left (-40+100 x-102 x^2+48 x^3-10 x^4+\left (40-50 x+34 x^2-12 x^3+2 x^4\right ) \log \left (20 x-25 x^2+17 x^3-6 x^4+x^5\right )\right )}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ &=e^6 \int \left (-\frac {40 x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {100 x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}-\frac {102 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {48 x^4}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}-\frac {10 x^5}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {2 x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}\right ) \, dx\\ &=\left (2 e^6\right ) \int \frac {x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \frac {x^5}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (40 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \frac {x^4}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (100 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (102 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ &=\left (2 e^6\right ) \int \frac {x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \left (\frac {6}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {x}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {-120+130 x-77 x^2+19 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}\right ) \, dx-\left (40 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \left (\frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {-20+25 x-17 x^2+6 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}\right ) \, dx+\left (100 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (102 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ &=\left (2 e^6\right ) \int \frac {x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \frac {x}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \frac {-120+130 x-77 x^2+19 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (40 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \frac {-20+25 x-17 x^2+6 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (60 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (100 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (102 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ &=\left (2 e^6\right ) \int \frac {x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \left (-\frac {120}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {130 x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}-\frac {77 x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {19 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}\right ) \, dx-\left (10 e^6\right ) \int \frac {x}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (40 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \left (-\frac {20}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {25 x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}-\frac {17 x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}+\frac {6 x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )}\right ) \, dx+\left (48 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (60 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (100 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (102 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ &=\left (2 e^6\right ) \int \frac {x}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (10 e^6\right ) \int \frac {x}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (40 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (48 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (60 e^6\right ) \int \frac {1}{\log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (100 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (102 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (190 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (288 e^6\right ) \int \frac {x^3}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (770 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (816 e^6\right ) \int \frac {x^2}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (960 e^6\right ) \int \frac {1}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (1200 e^6\right ) \int \frac {1}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx+\left (1200 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx-\left (1300 e^6\right ) \int \frac {x}{\left (20-25 x+17 x^2-6 x^3+x^4\right ) \log ^3\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 30, normalized size = 1.15 \begin {gather*} \frac {e^6 x^2}{\log ^2\left (x \left (20-25 x+17 x^2-6 x^3+x^4\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 31, normalized size = 1.19 \begin {gather*} \frac {x^{2} e^{6}}{\log \left (x^{5} - 6 \, x^{4} + 17 \, x^{3} - 25 \, x^{2} + 20 \, x\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 57, normalized size = 2.19 \begin {gather*} \frac {x^{2} e^{6}}{\log \left (x^{4} - 6 \, x^{3} + 17 \, x^{2} - 25 \, x + 20\right )^{2} + 2 \, \log \left (x^{4} - 6 \, x^{3} + 17 \, x^{2} - 25 \, x + 20\right ) \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 200, normalized size = 7.69
method | result | size |
risch | \(-\frac {4 \,{\mathrm e}^{6} x^{2}}{\left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right ) \mathrm {csgn}\left (i x \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right ) \mathrm {csgn}\left (i x \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right )^{2}+\pi \mathrm {csgn}\left (i x \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right )^{3}+2 i \ln \relax (x )+2 i \ln \left (x^{4}-6 x^{3}+17 x^{2}-25 x +20\right )\right )^{2}}\) | \(200\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 57, normalized size = 2.19 \begin {gather*} \frac {x^{2} e^{6}}{\log \left (x^{4} - 6 \, x^{3} + 17 \, x^{2} - 25 \, x + 20\right )^{2} + 2 \, \log \left (x^{4} - 6 \, x^{3} + 17 \, x^{2} - 25 \, x + 20\right ) \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.34, size = 443, normalized size = 17.04 \begin {gather*} \frac {x^2\,{\mathrm {e}}^6-\frac {x^2\,\ln \left (x^5-6\,x^4+17\,x^3-25\,x^2+20\,x\right )\,{\mathrm {e}}^6\,\left (x^4-6\,x^3+17\,x^2-25\,x+20\right )}{5\,x^4-24\,x^3+51\,x^2-50\,x+20}}{{\ln \left (x^5-6\,x^4+17\,x^3-25\,x^2+20\,x\right )}^2}-\frac {18\,x\,{\mathrm {e}}^6}{125}+\frac {2\,x^2\,{\mathrm {e}}^6}{25}+\frac {\frac {x^2\,{\mathrm {e}}^6\,\left (x^4-6\,x^3+17\,x^2-25\,x+20\right )}{5\,x^4-24\,x^3+51\,x^2-50\,x+20}-\frac {x^2\,\ln \left (x^5-6\,x^4+17\,x^3-25\,x^2+20\,x\right )\,{\mathrm {e}}^6\,\left (x^4-6\,x^3+17\,x^2-25\,x+20\right )\,\left (10\,x^8-102\,x^7+492\,x^6-1451\,x^5+2854\,x^4-3945\,x^3+3860\,x^2-2500\,x+800\right )}{{\left (5\,x^4-24\,x^3+51\,x^2-50\,x+20\right )}^3}}{\ln \left (x^5-6\,x^4+17\,x^3-25\,x^2+20\,x\right )}-\frac {-615\,{\mathrm {e}}^6\,x^{11}+8856\,{\mathrm {e}}^6\,x^{10}-\frac {276842\,{\mathrm {e}}^6\,x^9}{5}+\frac {1073739\,{\mathrm {e}}^6\,x^8}{5}-\frac {2975451\,{\mathrm {e}}^6\,x^7}{5}+\frac {6478543\,{\mathrm {e}}^6\,x^6}{5}-2302308\,{\mathrm {e}}^6\,x^5+3344556\,{\mathrm {e}}^6\,x^4-3744080\,{\mathrm {e}}^6\,x^3+2877120\,{\mathrm {e}}^6\,x^2-1200000\,{\mathrm {e}}^6\,x+140800\,{\mathrm {e}}^6}{15625\,x^{12}-225000\,x^{11}+1558125\,x^{10}-6786750\,x^9+20580375\,x^8-45571500\,x^7+75313875\,x^6-93378750\,x^5+86070000\,x^4-57475000\,x^3+26400000\,x^2-7500000\,x+1000000} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 31, normalized size = 1.19 \begin {gather*} \frac {x^{2} e^{6}}{\log {\left (x^{5} - 6 x^{4} + 17 x^{3} - 25 x^{2} + 20 x \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________