Optimal. Leaf size=16 \[ 3-e^{-10 e^{2+x}}+2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 15, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2282, 2194} \begin {gather*} 2 x-e^{-10 e^{x+2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+10 \int e^{2-10 e^{2+x}+x} \, dx\\ &=2 x+10 \operatorname {Subst}\left (\int e^{2-10 e^2 x} \, dx,x,e^x\right )\\ &=-e^{-10 e^{2+x}}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 0.94 \begin {gather*} -e^{-10 e^{2+x}}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 27, normalized size = 1.69 \begin {gather*} {\left (2 \, x e^{\left (x + 2\right )} - e^{\left (x - 10 \, e^{\left (x + 2\right )} + 2\right )}\right )} e^{\left (-x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 13, normalized size = 0.81 \begin {gather*} 2 \, x - e^{\left (-10 \, e^{\left (x + 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 14, normalized size = 0.88
method | result | size |
default | \(2 x -{\mathrm e}^{-10 \,{\mathrm e}^{2+x}}\) | \(14\) |
norman | \(2 x -{\mathrm e}^{-10 \,{\mathrm e}^{2+x}}\) | \(14\) |
risch | \(2 x -{\mathrm e}^{-10 \,{\mathrm e}^{2+x}}\) | \(14\) |
derivativedivides | \(2 \ln \left (-10 \,{\mathrm e}^{2+x}\right )-{\mathrm e}^{-10 \,{\mathrm e}^{2+x}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 13, normalized size = 0.81 \begin {gather*} 2 \, x - e^{\left (-10 \, e^{\left (x + 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 13, normalized size = 0.81 \begin {gather*} 2\,x-{\mathrm {e}}^{-10\,{\mathrm {e}}^{x+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.75 \begin {gather*} 2 x - e^{- 10 e^{x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________