Optimal. Leaf size=32 \[ \frac {-8+x}{\left (3 \left (3+e^{-3 \left (e^5-x\right )}\right )^2+\frac {x}{2}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 5.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {864+32 x-2 x^2+e^{-3 e^5+3 x} \left (576+1728 x-216 x^2\right )+e^{-6 e^5+6 x} \left (96+576 x-72 x^2\right )}{2916 x^2+432 e^{-9 e^5+9 x} x^2+36 e^{-12 e^5+12 x} x^2+108 x^3+x^4+e^{-6 e^5+6 x} \left (1944 x^2+12 x^3\right )+e^{-3 e^5+3 x} \left (3888 x^2+72 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{6 e^5} \left (-e^{6 e^5} \left (-432-16 x+x^2\right )-36 e^{3 \left (e^5+x\right )} \left (-8-24 x+3 x^2\right )-12 e^{6 x} \left (-4-24 x+3 x^2\right )\right )}{x^2 \left (6 e^{6 x}+36 e^{3 \left (e^5+x\right )}+e^{6 e^5} (54+x)\right )^2} \, dx\\ &=\left (2 e^{6 e^5}\right ) \int \frac {-e^{6 e^5} \left (-432-16 x+x^2\right )-36 e^{3 \left (e^5+x\right )} \left (-8-24 x+3 x^2\right )-12 e^{6 x} \left (-4-24 x+3 x^2\right )}{x^2 \left (6 e^{6 x}+36 e^{3 \left (e^5+x\right )}+e^{6 e^5} (54+x)\right )^2} \, dx\\ &=\left (2 e^{6 e^5}\right ) \int \left (\frac {e^{3 e^5} (-8+x) \left (323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x\right )}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}-\frac {2 \left (-4-24 x+3 x^2\right )}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )}\right ) \, dx\\ &=-\left (\left (4 e^{6 e^5}\right ) \int \frac {-4-24 x+3 x^2}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx\right )+\left (2 e^{9 e^5}\right ) \int \frac {(-8+x) \left (323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x\right )}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx\\ &=-\left (\left (4 e^{6 e^5}\right ) \int \left (\frac {3}{54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x}-\frac {4}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )}-\frac {24}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )}\right ) \, dx\right )+\left (2 e^{9 e^5}\right ) \int \left (\frac {323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}-\frac {8 \left (323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x\right )}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}\right ) \, dx\\ &=-\left (\left (12 e^{6 e^5}\right ) \int \frac {1}{54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x} \, dx\right )+\left (16 e^{6 e^5}\right ) \int \frac {1}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (96 e^{6 e^5}\right ) \int \frac {1}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (2 e^{9 e^5}\right ) \int \frac {323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx-\left (16 e^{9 e^5}\right ) \int \frac {323 e^{3 e^5}+108 e^{3 x}+6 e^{3 e^5} x}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx\\ &=-\left (\left (12 e^{6 e^5}\right ) \int \frac {1}{54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x} \, dx\right )+\left (16 e^{6 e^5}\right ) \int \frac {1}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (96 e^{6 e^5}\right ) \int \frac {1}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (2 e^{9 e^5}\right ) \int \left (\frac {323 e^{3 e^5}}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}+\frac {108 e^{3 x}}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}+\frac {6 e^{3 e^5} x}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}\right ) \, dx-\left (16 e^{9 e^5}\right ) \int \left (\frac {6 e^{3 e^5}}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}+\frac {323 e^{3 e^5}}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}+\frac {108 e^{3 x}}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2}\right ) \, dx\\ &=-\left (\left (12 e^{6 e^5}\right ) \int \frac {1}{54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x} \, dx\right )+\left (16 e^{6 e^5}\right ) \int \frac {1}{x^2 \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (96 e^{6 e^5}\right ) \int \frac {1}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )} \, dx+\left (216 e^{9 e^5}\right ) \int \frac {e^{3 x}}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx-\left (1728 e^{9 e^5}\right ) \int \frac {e^{3 x}}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx+\left (12 e^{12 e^5}\right ) \int \frac {x}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx-\left (96 e^{12 e^5}\right ) \int \frac {1}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx+\left (646 e^{12 e^5}\right ) \int \frac {1}{\left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx-\left (5168 e^{12 e^5}\right ) \int \frac {1}{x \left (54 e^{6 e^5}+6 e^{6 x}+36 e^{3 e^5+3 x}+e^{6 e^5} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 49, normalized size = 1.53 \begin {gather*} -\frac {2 e^{6 e^5} (8-x)}{x \left (6 e^{6 x}+36 e^{3 \left (e^5+x\right )}+e^{6 e^5} (54+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 38, normalized size = 1.19 \begin {gather*} \frac {2 \, {\left (x - 8\right )}}{x^{2} + 6 \, x e^{\left (6 \, x - 6 \, e^{5}\right )} + 36 \, x e^{\left (3 \, x - 3 \, e^{5}\right )} + 54 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 368, normalized size = 11.50 \begin {gather*} \frac {4 \, {\left (36 \, x^{5} e^{\left (6 \, e^{5}\right )} + 216 \, x^{4} e^{\left (6 \, x\right )} + 1296 \, x^{4} e^{\left (3 \, x + 3 \, e^{5}\right )} + 3588 \, x^{4} e^{\left (6 \, e^{5}\right )} + 9864 \, x^{3} e^{\left (6 \, x\right )} + 59184 \, x^{3} e^{\left (3 \, x + 3 \, e^{5}\right )} + 73321 \, x^{3} e^{\left (6 \, e^{5}\right )} - 92730 \, x^{2} e^{\left (6 \, x\right )} - 556380 \, x^{2} e^{\left (3 \, x + 3 \, e^{5}\right )} - 834578 \, x^{2} e^{\left (6 \, e^{5}\right )} - 48 \, x e^{\left (6 \, x\right )} - 288 \, x e^{\left (3 \, x + 3 \, e^{5}\right )} - 432 \, x e^{\left (6 \, e^{5}\right )}\right )}}{36 \, x^{6} e^{\left (6 \, e^{5}\right )} + 432 \, x^{5} e^{\left (6 \, x\right )} + 2592 \, x^{5} e^{\left (3 \, x + 3 \, e^{5}\right )} + 5820 \, x^{5} e^{\left (6 \, e^{5}\right )} + 93168 \, x^{4} e^{\left (6 \, x\right )} + 1296 \, x^{4} e^{\left (12 \, x - 6 \, e^{5}\right )} + 15552 \, x^{4} e^{\left (9 \, x - 3 \, e^{5}\right )} + 279072 \, x^{4} e^{\left (3 \, x + 3 \, e^{5}\right )} + 313633 \, x^{4} e^{\left (6 \, e^{5}\right )} + 3755820 \, x^{3} e^{\left (6 \, x\right )} + 69552 \, x^{3} e^{\left (12 \, x - 6 \, e^{5}\right )} + 834624 \, x^{3} e^{\left (9 \, x - 3 \, e^{5}\right )} + 7511688 \, x^{3} e^{\left (3 \, x + 3 \, e^{5}\right )} + 5633820 \, x^{3} e^{\left (6 \, e^{5}\right )} + 1944 \, x^{2} e^{\left (6 \, x\right )} + 36 \, x^{2} e^{\left (12 \, x - 6 \, e^{5}\right )} + 432 \, x^{2} e^{\left (9 \, x - 3 \, e^{5}\right )} + 3888 \, x^{2} e^{\left (3 \, x + 3 \, e^{5}\right )} + 2916 \, x^{2} e^{\left (6 \, e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.62, size = 36, normalized size = 1.12
method | result | size |
risch | \(\frac {2 x -16}{x \left (6 \,{\mathrm e}^{-6 \,{\mathrm e}^{5}+6 x}+36 \,{\mathrm e}^{-3 \,{\mathrm e}^{5}+3 x}+x +54\right )}\) | \(36\) |
norman | \(\frac {2 x -16}{x \left (6 \,{\mathrm e}^{-6 \,{\mathrm e}^{5}+6 x}+36 \,{\mathrm e}^{-3 \,{\mathrm e}^{5}+3 x}+x +54\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 56, normalized size = 1.75 \begin {gather*} \frac {2 \, {\left (x e^{\left (6 \, e^{5}\right )} - 8 \, e^{\left (6 \, e^{5}\right )}\right )}}{x^{2} e^{\left (6 \, e^{5}\right )} + 6 \, x e^{\left (6 \, x\right )} + 36 \, x e^{\left (3 \, x + 3 \, e^{5}\right )} + 54 \, x e^{\left (6 \, e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.07, size = 63, normalized size = 1.97 \begin {gather*} -\frac {2\,\left (-36\,x^4-1644\,x^3+15455\,x^2+8\,x\right )}{x^2\,\left (36\,x^2+1932\,x+1\right )\,\left (x+36\,{\mathrm {e}}^{3\,x-3\,{\mathrm {e}}^5}+6\,{\mathrm {e}}^{6\,x-6\,{\mathrm {e}}^5}+54\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 37, normalized size = 1.16 \begin {gather*} \frac {2 x - 16}{x^{2} + 36 x e^{3 x - 3 e^{5}} + 6 x e^{6 x - 6 e^{5}} + 54 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________