Optimal. Leaf size=26 \[ e^{-2 x} \left (1+e+2 x-e^{-e^4} (1+x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 192, normalized size of antiderivative = 7.38, number of steps used = 23, number of rules used = 3, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {2196, 2176, 2194} \begin {gather*} e^{-2 x-2 e^4} x^2-4 e^{-2 x-e^4} x^2+4 e^{-2 x} x^2+4 e^{1-2 x} x+2 e^{-2 x-2 e^4} x-4 e^{-2 x-e^4} x+4 e^{-2 x} x-2 (1+e) e^{-2 x-e^4} x+2 e^{1-2 x}+e^{-2 x-2 e^4}+(1-e) e^{-2 x-e^4}-2 e^{-2 x-e^4}+2 e^{-2 x}-\left (1-e^2\right ) e^{-2 x}-(1+e) e^{-2 x-e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{-2 e^4-2 x} x-2 e^{-2 e^4-2 x} x^2-2 e^{-2 x} \left (-1+e^2+4 e x+4 x^2\right )+2 e^{-e^4-2 x} \left (-1+e+2 (1+e) x+4 x^2\right )\right ) \, dx\\ &=-\left (2 \int e^{-2 e^4-2 x} x \, dx\right )-2 \int e^{-2 e^4-2 x} x^2 \, dx-2 \int e^{-2 x} \left (-1+e^2+4 e x+4 x^2\right ) \, dx+2 \int e^{-e^4-2 x} \left (-1+e+2 (1+e) x+4 x^2\right ) \, dx\\ &=e^{-2 e^4-2 x} x+e^{-2 e^4-2 x} x^2-2 \int e^{-2 e^4-2 x} x \, dx+2 \int \left ((-1+e) e^{-e^4-2 x}+2 e^{-e^4-2 x} (1+e) x+4 e^{-e^4-2 x} x^2\right ) \, dx-2 \int \left (e^{-2 x} \left (-1+e^2\right )+4 e^{1-2 x} x+4 e^{-2 x} x^2\right ) \, dx-\int e^{-2 e^4-2 x} \, dx\\ &=\frac {1}{2} e^{-2 e^4-2 x}+2 e^{-2 e^4-2 x} x+e^{-2 e^4-2 x} x^2-8 \int e^{1-2 x} x \, dx+8 \int e^{-e^4-2 x} x^2 \, dx-8 \int e^{-2 x} x^2 \, dx-(2 (1-e)) \int e^{-e^4-2 x} \, dx+(4 (1+e)) \int e^{-e^4-2 x} x \, dx+\left (2 \left (1-e^2\right )\right ) \int e^{-2 x} \, dx-\int e^{-2 e^4-2 x} \, dx\\ &=e^{-2 e^4-2 x}+(1-e) e^{-e^4-2 x}-e^{-2 x} \left (1-e^2\right )+4 e^{1-2 x} x+2 e^{-2 e^4-2 x} x-2 e^{-e^4-2 x} (1+e) x+e^{-2 e^4-2 x} x^2-4 e^{-e^4-2 x} x^2+4 e^{-2 x} x^2-4 \int e^{1-2 x} \, dx+8 \int e^{-e^4-2 x} x \, dx-8 \int e^{-2 x} x \, dx+(2 (1+e)) \int e^{-e^4-2 x} \, dx\\ &=2 e^{1-2 x}+e^{-2 e^4-2 x}+(1-e) e^{-e^4-2 x}-e^{-e^4-2 x} (1+e)-e^{-2 x} \left (1-e^2\right )+4 e^{1-2 x} x+2 e^{-2 e^4-2 x} x-4 e^{-e^4-2 x} x+4 e^{-2 x} x-2 e^{-e^4-2 x} (1+e) x+e^{-2 e^4-2 x} x^2-4 e^{-e^4-2 x} x^2+4 e^{-2 x} x^2+4 \int e^{-e^4-2 x} \, dx-4 \int e^{-2 x} \, dx\\ &=2 e^{1-2 x}+e^{-2 e^4-2 x}-2 e^{-e^4-2 x}+(1-e) e^{-e^4-2 x}+2 e^{-2 x}-e^{-e^4-2 x} (1+e)-e^{-2 x} \left (1-e^2\right )+4 e^{1-2 x} x+2 e^{-2 e^4-2 x} x-4 e^{-e^4-2 x} x+4 e^{-2 x} x-2 e^{-e^4-2 x} (1+e) x+e^{-2 e^4-2 x} x^2-4 e^{-e^4-2 x} x^2+4 e^{-2 x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 35, normalized size = 1.35 \begin {gather*} e^{-2 \left (e^4+x\right )} \left (-1+e^{1+e^4}-x+e^{e^4} (1+2 x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 72, normalized size = 2.77 \begin {gather*} {\left (4 \, x^{2} + 2 \, {\left (2 \, x + 1\right )} e + 4 \, x + e^{2} + 1\right )} e^{\left (-2 \, x\right )} - 2 \, {\left (2 \, x^{2} + {\left (x + 1\right )} e + 3 \, x + 1\right )} e^{\left (-2 \, x - e^{4}\right )} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x - 2 \, e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 89, normalized size = 3.42 \begin {gather*} {\left (4 \, x^{2} + 4 \, x + 1\right )} e^{\left (-2 \, x\right )} - 2 \, {\left (x + 1\right )} e^{\left (-2 \, x - e^{4} + 1\right )} - 2 \, {\left (2 \, x^{2} + 3 \, x + 1\right )} e^{\left (-2 \, x - e^{4}\right )} + {\left (x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x - 2 \, e^{4}\right )} + 2 \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x + 1\right )} + e^{\left (-2 \, x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.27
method | result | size |
gosper | \(\left ({\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}+2 x \,{\mathrm e}^{{\mathrm e}^{4}}+{\mathrm e}^{{\mathrm e}^{4}}-x -1\right )^{2} {\mathrm e}^{-2 x} {\mathrm e}^{-2 \,{\mathrm e}^{4}}\) | \(33\) |
risch | \(\left ({\mathrm e}^{2 \,{\mathrm e}^{4}+2}+4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}+1}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} x^{2}+2 \,{\mathrm e}^{2 \,{\mathrm e}^{4}+1}-2 x \,{\mathrm e}^{{\mathrm e}^{4}+1}+4 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}-4 x^{2} {\mathrm e}^{{\mathrm e}^{4}}-2 \,{\mathrm e}^{{\mathrm e}^{4}+1}+{\mathrm e}^{2 \,{\mathrm e}^{4}}-6 x \,{\mathrm e}^{{\mathrm e}^{4}}+x^{2}-2 \,{\mathrm e}^{{\mathrm e}^{4}}+2 x +1\right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}-2 x}\) | \(102\) |
norman | \(\left (\left ({\mathrm e}^{2} {\mathrm e}^{2 \,{\mathrm e}^{4}}+{\mathrm e}^{2 \,{\mathrm e}^{4}}-2 \,{\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}-2 \,{\mathrm e}^{{\mathrm e}^{4}}+1+2 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}\right ) {\mathrm e}^{-{\mathrm e}^{4}}+\left (4 \,{\mathrm e}^{2 \,{\mathrm e}^{4}}-4 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}} x^{2}+2 \left (2 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}-{\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}-3 \,{\mathrm e}^{{\mathrm e}^{4}}+1+2 \,{\mathrm e}^{2 \,{\mathrm e}^{4}}\right ) {\mathrm e}^{-{\mathrm e}^{4}} x \right ) {\mathrm e}^{-2 x} {\mathrm e}^{-{\mathrm e}^{4}}\) | \(117\) |
meijerg | \(-{\mathrm e}^{2} \left (1-{\mathrm e}^{-2 x}\right )+1-{\mathrm e}^{-2 x}+{\mathrm e}^{1-{\mathrm e}^{4}} \left (1-{\mathrm e}^{-2 x}\right )-{\mathrm e}^{-{\mathrm e}^{4}} \left (1-{\mathrm e}^{-2 x}\right )+\frac {{\mathrm e}^{-2 \,{\mathrm e}^{4}} \left (-8 \,{\mathrm e}^{2 \,{\mathrm e}^{4}+1}+4 \,{\mathrm e}^{{\mathrm e}^{4}+1}+4 \,{\mathrm e}^{{\mathrm e}^{4}}-2\right ) \left (1-\frac {\left (4 x +2\right ) {\mathrm e}^{-2 x}}{2}\right )}{4}+\frac {{\mathrm e}^{-2 \,{\mathrm e}^{4}} \left (-8 \,{\mathrm e}^{2 \,{\mathrm e}^{4}}+8 \,{\mathrm e}^{{\mathrm e}^{4}}-2\right ) \left (2-\frac {\left (12 x^{2}+12 x +6\right ) {\mathrm e}^{-2 x}}{3}\right )}{8}\) | \(134\) |
default | \({\mathrm e}^{-2 \,{\mathrm e}^{4}} \left (2 x \,{\mathrm e}^{-2 x}+{\mathrm e}^{-2 x}+x^{2} {\mathrm e}^{-2 x}+{\mathrm e}^{-2 x} {\mathrm e}^{{\mathrm e}^{4}}-{\mathrm e}^{-2 x} {\mathrm e}^{2 \,{\mathrm e}^{4}}+4 \,{\mathrm e}^{{\mathrm e}^{4}} \left (-\frac {x \,{\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )+8 \,{\mathrm e}^{{\mathrm e}^{4}} \left (-\frac {x^{2} {\mathrm e}^{-2 x}}{2}-\frac {x \,{\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )-8 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (-\frac {x^{2} {\mathrm e}^{-2 x}}{2}-\frac {x \,{\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )-{\mathrm e}^{-2 x} {\mathrm e}^{{\mathrm e}^{4}} {\mathrm e}+{\mathrm e}^{-2 x} {\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e}^{2}+4 \,{\mathrm e}^{{\mathrm e}^{4}} {\mathrm e} \left (-\frac {x \,{\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )-8 \,{\mathrm e}^{2 \,{\mathrm e}^{4}} {\mathrm e} \left (-\frac {x \,{\mathrm e}^{-2 x}}{2}-\frac {{\mathrm e}^{-2 x}}{4}\right )\right )\) | \(192\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 157, normalized size = 6.04 \begin {gather*} 2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} + 2 \, {\left (2 \, x e + e\right )} e^{\left (-2 \, x\right )} - 2 \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x - e^{4}\right )} - {\left (2 \, x e + e\right )} e^{\left (-2 \, x - e^{4}\right )} - {\left (2 \, x + 1\right )} e^{\left (-2 \, x - e^{4}\right )} + \frac {1}{2} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x - 2 \, e^{4}\right )} + \frac {1}{2} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x - 2 \, e^{4}\right )} - e^{\left (-2 \, x\right )} - e^{\left (-2 \, x - e^{4} + 1\right )} + e^{\left (-2 \, x - e^{4}\right )} + e^{\left (-2 \, x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.52, size = 109, normalized size = 4.19 \begin {gather*} {\mathrm {e}}^{-2\,x-2\,{\mathrm {e}}^4}\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^4}-2\,{\mathrm {e}}^{{\mathrm {e}}^4+1}+2\,{\mathrm {e}}^{2\,{\mathrm {e}}^4+1}+{\mathrm {e}}^{2\,{\mathrm {e}}^4+2}-2\,{\mathrm {e}}^{{\mathrm {e}}^4}+1\right )+x^2\,{\mathrm {e}}^{-2\,x-2\,{\mathrm {e}}^4}\,{\left (2\,{\mathrm {e}}^{{\mathrm {e}}^4}-1\right )}^2+x\,{\mathrm {e}}^{-2\,x-2\,{\mathrm {e}}^4}\,\left (4\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}-2\,{\mathrm {e}}^{{\mathrm {e}}^4+1}+4\,{\mathrm {e}}^{2\,{\mathrm {e}}^4+1}-6\,{\mathrm {e}}^{{\mathrm {e}}^4}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 131, normalized size = 5.04 \begin {gather*} \frac {\left (- 4 x^{2} e^{e^{4}} + x^{2} + 4 x^{2} e^{2 e^{4}} - 6 x e^{e^{4}} - 2 e x e^{e^{4}} + 2 x + 4 x e^{2 e^{4}} + 4 e x e^{2 e^{4}} - 2 e e^{e^{4}} - 2 e^{e^{4}} + 1 + e^{2 e^{4}} + 2 e e^{2 e^{4}} + e^{2} e^{2 e^{4}}\right ) e^{- 2 x}}{e^{2 e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________