Optimal. Leaf size=22 \[ 4-\left (4+e^{3 x}\right )^2+\frac {5}{2 x}+\log (3) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2194} \begin {gather*} -8 e^{3 x}-e^{6 x}+\frac {5}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-5-48 e^{3 x} x^2-12 e^{6 x} x^2}{x^2} \, dx\\ &=\frac {1}{2} \int \left (-48 e^{3 x}-12 e^{6 x}-\frac {5}{x^2}\right ) \, dx\\ &=\frac {5}{2 x}-6 \int e^{6 x} \, dx-24 \int e^{3 x} \, dx\\ &=-8 e^{3 x}-e^{6 x}+\frac {5}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.00 \begin {gather*} -8 e^{3 x}-e^{6 x}+\frac {5}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.41, size = 21, normalized size = 0.95 \begin {gather*} -\frac {2 \, x e^{\left (6 \, x\right )} + 16 \, x e^{\left (3 \, x\right )} - 5}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.11, size = 21, normalized size = 0.95 \begin {gather*} -\frac {2 \, x e^{\left (6 \, x\right )} + 16 \, x e^{\left (3 \, x\right )} - 5}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.86
method | result | size |
risch | \(\frac {5}{2 x}-{\mathrm e}^{6 x}-8 \,{\mathrm e}^{3 x}\) | \(19\) |
derivativedivides | \(\frac {5}{2 x}-{\mathrm e}^{6 x}-8 \,{\mathrm e}^{3 x}\) | \(21\) |
default | \(\frac {5}{2 x}-{\mathrm e}^{6 x}-8 \,{\mathrm e}^{3 x}\) | \(21\) |
norman | \(\frac {\frac {5}{2}-8 x \,{\mathrm e}^{3 x}-x \,{\mathrm e}^{6 x}}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 18, normalized size = 0.82 \begin {gather*} \frac {5}{2 \, x} - e^{\left (6 \, x\right )} - 8 \, e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.82 \begin {gather*} \frac {5}{2\,x}-{\mathrm {e}}^{6\,x}-8\,{\mathrm {e}}^{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.68 \begin {gather*} - e^{6 x} - 8 e^{3 x} + \frac {5}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________