Optimal. Leaf size=27 \[ \left (1+\left (-x+\frac {x^2}{256}\right )^2\right ) \left (4+\log \left (1+e^3-x\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.54, antiderivative size = 303, normalized size of antiderivative = 11.22, number of steps used = 23, number of rules used = 5, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6742, 43, 142, 2417, 2395} \begin {gather*} \frac {x^4}{16384}+\frac {x^4 \log \left (-x+e^3+1\right )}{65536}+\frac {\left (1+e^3\right ) x^3}{12288}-\frac {e^3 x^3}{12288}-\frac {385 x^3}{12288}-\frac {1}{128} x^3 \log \left (-x+e^3+1\right )+\frac {\left (1+e^3\right )^2 x^2}{8192}-\frac {385 \left (1+e^3\right ) x^2}{8192}+\frac {e^3 \left (383-e^3\right ) x^2}{8192}+\frac {259 x^2}{64}+x^2 \log \left (-x+e^3+1\right )-\frac {e^3 \left (32385-382 e^3+e^6\right ) x}{4096}+\frac {\left (1+e^3\right )^3 x}{4096}-\frac {385 \left (1+e^3\right )^2 x}{4096}+\frac {259}{32} \left (1+e^3\right ) x-8 x-\frac {e^3 \left (32385+32003 e^3-381 e^6+e^9\right ) \log \left (-x+e^3+1\right )}{4096}+\frac {\left (1+e^3\right )^4 \log \left (-x+e^3+1\right )}{4096}-\frac {385 \left (1+e^3\right )^3 \log \left (-x+e^3+1\right )}{4096}+\frac {259}{32} \left (1+e^3\right )^2 \log \left (-x+e^3+1\right )-8 \left (1+e^3\right ) \log \left (-x+e^3+1\right )+\log \left (-x+e^3+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 142
Rule 2395
Rule 2417
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 x}{1+e^3-x}+\frac {e^3 (-256+x) (-128+x) x}{4096 \left (1+e^3-x\right )}-\frac {291 x^2}{32 \left (1+e^3-x\right )}+\frac {417 x^3}{4096 \left (1+e^3-x\right )}-\frac {17 x^4}{65536 \left (1+e^3-x\right )}+\frac {1}{-1-e^3+x}+\frac {(-256+x) (-128+x) x \log \left (1+e^3-x\right )}{16384}\right ) \, dx\\ &=\log \left (1+e^3-x\right )+\frac {\int (-256+x) (-128+x) x \log \left (1+e^3-x\right ) \, dx}{16384}-\frac {17 \int \frac {x^4}{1+e^3-x} \, dx}{65536}+\frac {417 \int \frac {x^3}{1+e^3-x} \, dx}{4096}+8 \int \frac {x}{1+e^3-x} \, dx-\frac {291}{32} \int \frac {x^2}{1+e^3-x} \, dx+\frac {e^3 \int \frac {(-256+x) (-128+x) x}{1+e^3-x} \, dx}{4096}\\ &=\log \left (1+e^3-x\right )+\frac {\int \left (32768 x \log \left (1+e^3-x\right )-384 x^2 \log \left (1+e^3-x\right )+x^3 \log \left (1+e^3-x\right )\right ) \, dx}{16384}-\frac {17 \int \left (-\left (1+e^3\right )^3+\frac {\left (1+e^3\right )^4}{1+e^3-x}-\left (1+e^3\right )^2 x-\left (1+e^3\right ) x^2-x^3\right ) \, dx}{65536}+\frac {417 \int \left (-\left (1+e^3\right )^2+\frac {\left (1+e^3\right )^3}{1+e^3-x}-\left (1+e^3\right ) x-x^2\right ) \, dx}{4096}+8 \int \left (-1+\frac {1+e^3}{1+e^3-x}\right ) \, dx-\frac {291}{32} \int \left (-1-e^3+\frac {\left (1+e^3\right )^2}{1+e^3-x}-x\right ) \, dx+\frac {e^3 \int \left (-32385 \left (1+\frac {e^3 \left (-382+e^3\right )}{32385}\right )+\frac {32385+32003 e^3-381 e^6+e^9}{1+e^3-x}-\left (-383+e^3\right ) x-x^2\right ) \, dx}{4096}\\ &=-8 x+\frac {291}{32} \left (1+e^3\right ) x-\frac {417 \left (1+e^3\right )^2 x}{4096}+\frac {17 \left (1+e^3\right )^3 x}{65536}-\frac {e^3 \left (32385-382 e^3+e^6\right ) x}{4096}+\frac {291 x^2}{64}+\frac {e^3 \left (383-e^3\right ) x^2}{8192}-\frac {417 \left (1+e^3\right ) x^2}{8192}+\frac {17 \left (1+e^3\right )^2 x^2}{131072}-\frac {139 x^3}{4096}-\frac {e^3 x^3}{12288}+\frac {17 \left (1+e^3\right ) x^3}{196608}+\frac {17 x^4}{262144}+\log \left (1+e^3-x\right )-8 \left (1+e^3\right ) \log \left (1+e^3-x\right )+\frac {291}{32} \left (1+e^3\right )^2 \log \left (1+e^3-x\right )-\frac {417 \left (1+e^3\right )^3 \log \left (1+e^3-x\right )}{4096}+\frac {17 \left (1+e^3\right )^4 \log \left (1+e^3-x\right )}{65536}-\frac {e^3 \left (32385+32003 e^3-381 e^6+e^9\right ) \log \left (1+e^3-x\right )}{4096}+\frac {\int x^3 \log \left (1+e^3-x\right ) \, dx}{16384}-\frac {3}{128} \int x^2 \log \left (1+e^3-x\right ) \, dx+2 \int x \log \left (1+e^3-x\right ) \, dx\\ &=-8 x+\frac {291}{32} \left (1+e^3\right ) x-\frac {417 \left (1+e^3\right )^2 x}{4096}+\frac {17 \left (1+e^3\right )^3 x}{65536}-\frac {e^3 \left (32385-382 e^3+e^6\right ) x}{4096}+\frac {291 x^2}{64}+\frac {e^3 \left (383-e^3\right ) x^2}{8192}-\frac {417 \left (1+e^3\right ) x^2}{8192}+\frac {17 \left (1+e^3\right )^2 x^2}{131072}-\frac {139 x^3}{4096}-\frac {e^3 x^3}{12288}+\frac {17 \left (1+e^3\right ) x^3}{196608}+\frac {17 x^4}{262144}+\log \left (1+e^3-x\right )-8 \left (1+e^3\right ) \log \left (1+e^3-x\right )+\frac {291}{32} \left (1+e^3\right )^2 \log \left (1+e^3-x\right )-\frac {417 \left (1+e^3\right )^3 \log \left (1+e^3-x\right )}{4096}+\frac {17 \left (1+e^3\right )^4 \log \left (1+e^3-x\right )}{65536}-\frac {e^3 \left (32385+32003 e^3-381 e^6+e^9\right ) \log \left (1+e^3-x\right )}{4096}+x^2 \log \left (1+e^3-x\right )-\frac {1}{128} x^3 \log \left (1+e^3-x\right )+\frac {x^4 \log \left (1+e^3-x\right )}{65536}+\frac {\int \frac {x^4}{1+e^3-x} \, dx}{65536}-\frac {1}{128} \int \frac {x^3}{1+e^3-x} \, dx+\int \frac {x^2}{1+e^3-x} \, dx\\ &=-8 x+\frac {291}{32} \left (1+e^3\right ) x-\frac {417 \left (1+e^3\right )^2 x}{4096}+\frac {17 \left (1+e^3\right )^3 x}{65536}-\frac {e^3 \left (32385-382 e^3+e^6\right ) x}{4096}+\frac {291 x^2}{64}+\frac {e^3 \left (383-e^3\right ) x^2}{8192}-\frac {417 \left (1+e^3\right ) x^2}{8192}+\frac {17 \left (1+e^3\right )^2 x^2}{131072}-\frac {139 x^3}{4096}-\frac {e^3 x^3}{12288}+\frac {17 \left (1+e^3\right ) x^3}{196608}+\frac {17 x^4}{262144}+\log \left (1+e^3-x\right )-8 \left (1+e^3\right ) \log \left (1+e^3-x\right )+\frac {291}{32} \left (1+e^3\right )^2 \log \left (1+e^3-x\right )-\frac {417 \left (1+e^3\right )^3 \log \left (1+e^3-x\right )}{4096}+\frac {17 \left (1+e^3\right )^4 \log \left (1+e^3-x\right )}{65536}-\frac {e^3 \left (32385+32003 e^3-381 e^6+e^9\right ) \log \left (1+e^3-x\right )}{4096}+x^2 \log \left (1+e^3-x\right )-\frac {1}{128} x^3 \log \left (1+e^3-x\right )+\frac {x^4 \log \left (1+e^3-x\right )}{65536}+\frac {\int \left (-\left (1+e^3\right )^3+\frac {\left (1+e^3\right )^4}{1+e^3-x}-\left (1+e^3\right )^2 x-\left (1+e^3\right ) x^2-x^3\right ) \, dx}{65536}-\frac {1}{128} \int \left (-\left (1+e^3\right )^2+\frac {\left (1+e^3\right )^3}{1+e^3-x}-\left (1+e^3\right ) x-x^2\right ) \, dx+\int \left (-1-e^3+\frac {\left (1+e^3\right )^2}{1+e^3-x}-x\right ) \, dx\\ &=-8 x+\frac {259}{32} \left (1+e^3\right ) x-\frac {385 \left (1+e^3\right )^2 x}{4096}+\frac {\left (1+e^3\right )^3 x}{4096}-\frac {e^3 \left (32385-382 e^3+e^6\right ) x}{4096}+\frac {259 x^2}{64}+\frac {e^3 \left (383-e^3\right ) x^2}{8192}-\frac {385 \left (1+e^3\right ) x^2}{8192}+\frac {\left (1+e^3\right )^2 x^2}{8192}-\frac {385 x^3}{12288}-\frac {e^3 x^3}{12288}+\frac {\left (1+e^3\right ) x^3}{12288}+\frac {x^4}{16384}+\log \left (1+e^3-x\right )-8 \left (1+e^3\right ) \log \left (1+e^3-x\right )+\frac {259}{32} \left (1+e^3\right )^2 \log \left (1+e^3-x\right )-\frac {385 \left (1+e^3\right )^3 \log \left (1+e^3-x\right )}{4096}+\frac {\left (1+e^3\right )^4 \log \left (1+e^3-x\right )}{4096}-\frac {e^3 \left (32385+32003 e^3-381 e^6+e^9\right ) \log \left (1+e^3-x\right )}{4096}+x^2 \log \left (1+e^3-x\right )-\frac {1}{128} x^3 \log \left (1+e^3-x\right )+\frac {x^4 \log \left (1+e^3-x\right )}{65536}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.14, size = 72, normalized size = 2.67 \begin {gather*} \frac {262144 x^2-2048 x^3+4 x^4+65536 \log \left (1+e^3-x\right )+65536 x^2 \log \left (1+e^3-x\right )-512 x^3 \log \left (1+e^3-x\right )+x^4 \log \left (1+e^3-x\right )}{65536} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 41, normalized size = 1.52 \begin {gather*} \frac {1}{16384} \, x^{4} - \frac {1}{32} \, x^{3} + 4 \, x^{2} + \frac {1}{65536} \, {\left (x^{4} - 512 \, x^{3} + 65536 \, x^{2} + 65536\right )} \log \left (-x + e^{3} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 62, normalized size = 2.30 \begin {gather*} \frac {1}{65536} \, x^{4} \log \left (-x + e^{3} + 1\right ) + \frac {1}{16384} \, x^{4} - \frac {1}{128} \, x^{3} \log \left (-x + e^{3} + 1\right ) - \frac {1}{32} \, x^{3} + x^{2} \log \left (-x + e^{3} + 1\right ) + 4 \, x^{2} + \log \left (x - e^{3} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 48, normalized size = 1.78
method | result | size |
risch | \(\left (\frac {1}{65536} x^{4}-\frac {1}{128} x^{3}+x^{2}\right ) \ln \left ({\mathrm e}^{3}-x +1\right )+\frac {x^{4}}{16384}-\frac {x^{3}}{32}+4 x^{2}+\ln \left (-{\mathrm e}^{3}+x -1\right )\) | \(48\) |
norman | \(\ln \left ({\mathrm e}^{3}-x +1\right )+\ln \left ({\mathrm e}^{3}-x +1\right ) x^{2}+4 x^{2}-\frac {x^{3}}{32}+\frac {x^{4}}{16384}-\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) x^{3}}{128}+\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) x^{4}}{65536}\) | \(63\) |
derivativedivides | \(\frac {32385 x}{4096}+\frac {32003 \,{\mathrm e}^{6} \ln \left ({\mathrm e}^{3}-x +1\right )}{32768}-\frac {5 \,{\mathrm e}^{9} \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {27 \,{\mathrm e}^{6} \left ({\mathrm e}^{3}-x +1\right )^{2}}{65536}+\frac {1905 \,{\mathrm e}^{6} \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {127 \,{\mathrm e}^{9} \ln \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {381 \,{\mathrm e}^{6} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {3 \,{\mathrm e}^{6} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{2}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{2}}{4}\right )}{16384}-\frac {{\mathrm e}^{9} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {{\mathrm e}^{12} \ln \left ({\mathrm e}^{3}-x +1\right )}{65536}-\frac {32385 \,{\mathrm e}^{3}}{4096}+\frac {130561 \ln \left ({\mathrm e}^{3}-x +1\right )}{65536}+\frac {32003 \left ({\mathrm e}^{3}-x +1\right )^{2}}{8192}+\frac {32385 \,{\mathrm e}^{3} \ln \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {32003 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{32768}-\frac {381 \,{\mathrm e}^{3} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{2}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{2}}{4}\right )}{8192}+\frac {127 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{3}}{16384}-\frac {3 \,{\mathrm e}^{3} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{3}}{3}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{3}}{9}\right )}{16384}+\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{4}}{65536}-\frac {13 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )^{3}}{49152}-\frac {3429 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )^{2}}{32768}-\frac {160015 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {32385 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {32003 \,{\mathrm e}^{3} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {127 \left ({\mathrm e}^{3}-x +1\right )^{3}}{4096}+\frac {\left ({\mathrm e}^{3}-x +1\right )^{4}}{16384}-\frac {32385}{4096}\) | \(451\) |
default | \(\frac {32385 x}{4096}+\frac {32003 \,{\mathrm e}^{6} \ln \left ({\mathrm e}^{3}-x +1\right )}{32768}-\frac {5 \,{\mathrm e}^{9} \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {27 \,{\mathrm e}^{6} \left ({\mathrm e}^{3}-x +1\right )^{2}}{65536}+\frac {1905 \,{\mathrm e}^{6} \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {127 \,{\mathrm e}^{9} \ln \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {381 \,{\mathrm e}^{6} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {3 \,{\mathrm e}^{6} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{2}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{2}}{4}\right )}{16384}-\frac {{\mathrm e}^{9} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {{\mathrm e}^{12} \ln \left ({\mathrm e}^{3}-x +1\right )}{65536}-\frac {32385 \,{\mathrm e}^{3}}{4096}+\frac {130561 \ln \left ({\mathrm e}^{3}-x +1\right )}{65536}+\frac {32003 \left ({\mathrm e}^{3}-x +1\right )^{2}}{8192}+\frac {32385 \,{\mathrm e}^{3} \ln \left ({\mathrm e}^{3}-x +1\right )}{16384}+\frac {32003 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{32768}-\frac {381 \,{\mathrm e}^{3} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{2}}{2}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{2}}{4}\right )}{8192}+\frac {127 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{3}}{16384}-\frac {3 \,{\mathrm e}^{3} \left (\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{3}}{3}-\frac {\left ({\mathrm e}^{3}-x +1\right )^{3}}{9}\right )}{16384}+\frac {\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )^{4}}{65536}-\frac {13 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )^{3}}{49152}-\frac {3429 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )^{2}}{32768}-\frac {160015 \,{\mathrm e}^{3} \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {32385 \ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )}{16384}-\frac {32003 \,{\mathrm e}^{3} \left (\ln \left ({\mathrm e}^{3}-x +1\right ) \left ({\mathrm e}^{3}-x +1\right )-{\mathrm e}^{3}+x -1\right )}{16384}+\frac {127 \left ({\mathrm e}^{3}-x +1\right )^{3}}{4096}+\frac {\left ({\mathrm e}^{3}-x +1\right )^{4}}{16384}-\frac {32385}{4096}\) | \(451\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 856, normalized size = 31.70 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 47, normalized size = 1.74 \begin {gather*} \ln \left (x-{\mathrm {e}}^3-1\right )+\ln \left ({\mathrm {e}}^3-x+1\right )\,\left (\frac {x^4}{65536}-\frac {x^3}{128}+x^2\right )+4\,x^2-\frac {x^3}{32}+\frac {x^4}{16384} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.28, size = 44, normalized size = 1.63 \begin {gather*} \frac {x^{4}}{16384} - \frac {x^{3}}{32} + 4 x^{2} + \left (\frac {x^{4}}{65536} - \frac {x^{3}}{128} + x^{2}\right ) \log {\left (- x + 1 + e^{3} \right )} + \log {\left (x - e^{3} - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________