Optimal. Leaf size=24 \[ 6 \left (\frac {2}{e^2 x}-x+\log \left (\frac {1}{3 x^3}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 7, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {12, 1593, 1833, 446, 72, 1586, 14} \begin {gather*} 6 \log \left (3 x^4+1\right )-6 x+\frac {12}{e^2 x}-18 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 72
Rule 446
Rule 1586
Rule 1593
Rule 1833
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-12-36 x^4+e^2 \left (-18 x-6 x^2+18 x^5-18 x^6\right )}{x^2+3 x^6} \, dx}{e^2}\\ &=\frac {\int \frac {-12-36 x^4+e^2 \left (-18 x-6 x^2+18 x^5-18 x^6\right )}{x^2 \left (1+3 x^4\right )} \, dx}{e^2}\\ &=\frac {\int \left (\frac {-18 e^2+18 e^2 x^4}{x \left (1+3 x^4\right )}+\frac {-12-6 e^2 x^2-36 x^4-18 e^2 x^6}{x^2 \left (1+3 x^4\right )}\right ) \, dx}{e^2}\\ &=\frac {\int \frac {-18 e^2+18 e^2 x^4}{x \left (1+3 x^4\right )} \, dx}{e^2}+\frac {\int \frac {-12-6 e^2 x^2-36 x^4-18 e^2 x^6}{x^2 \left (1+3 x^4\right )} \, dx}{e^2}\\ &=\frac {\operatorname {Subst}\left (\int \frac {-18 e^2+18 e^2 x}{x (1+3 x)} \, dx,x,x^4\right )}{4 e^2}+\frac {\int \frac {-12-6 e^2 x^2}{x^2} \, dx}{e^2}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {18 e^2}{x}+\frac {72 e^2}{1+3 x}\right ) \, dx,x,x^4\right )}{4 e^2}+\frac {\int \left (-6 e^2-\frac {12}{x^2}\right ) \, dx}{e^2}\\ &=\frac {12}{e^2 x}-6 x-18 \log (x)+6 \log \left (1+3 x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.50 \begin {gather*} -\frac {6 \left (-\frac {2}{x}+e^2 x+3 e^2 \log (x)-e^2 \log \left (1+3 x^4\right )\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 35, normalized size = 1.46 \begin {gather*} -\frac {6 \, {\left (x^{2} e^{2} - x e^{2} \log \left (3 \, x^{4} + 1\right ) + 3 \, x e^{2} \log \relax (x) - 2\right )} e^{\left (-2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 33, normalized size = 1.38 \begin {gather*} -6 \, {\left (x e^{2} - e^{2} \log \left (3 \, x^{4} + 1\right ) + 3 \, e^{2} \log \left ({\left | x \right |}\right ) - \frac {2}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 26, normalized size = 1.08
method | result | size |
risch | \(-6 x +\frac {12 \,{\mathrm e}^{-2}}{x}-18 \ln \relax (x )+6 \ln \left (-3 x^{4}-1\right )\) | \(26\) |
norman | \(\frac {-6 x^{2}+12 \,{\mathrm e}^{-2}}{x}-18 \ln \relax (x )+6 \ln \left (3 x^{4}+1\right )\) | \(32\) |
default | \({\mathrm e}^{-2} \left (-6 \,{\mathrm e}^{2} x +\frac {12}{x}-18 \,{\mathrm e}^{2} \ln \relax (x )+6 \,{\mathrm e}^{2} \ln \left (3 x^{4}+1\right )\right )\) | \(35\) |
meijerg | \(-3 \,{\mathrm e}^{-2} 3^{\frac {1}{4}} \left (-\frac {4 \,3^{\frac {3}{4}}}{3 x}-x^{3} 3^{\frac {3}{4}} \left (\frac {3^{\frac {1}{4}} \sqrt {2}\, \ln \left (1-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{6 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {3^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{3 \left (x^{4}\right )^{\frac {3}{4}}}-\frac {3^{\frac {1}{4}} \sqrt {2}\, \ln \left (1+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{6 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {3^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{3 \left (x^{4}\right )^{\frac {3}{4}}}\right )\right )-\frac {3^{\frac {3}{4}} \left (4 x 3^{\frac {1}{4}}-x 3^{\frac {1}{4}} \left (-\frac {3^{\frac {3}{4}} \sqrt {2}\, \ln \left (1-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{6 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {3^{\frac {3}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{3 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {3^{\frac {3}{4}} \sqrt {2}\, \ln \left (1+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{6 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {3^{\frac {3}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{3 \left (x^{4}\right )^{\frac {1}{4}}}\right )\right )}{2}+6 \ln \left (3 x^{4}+1\right )-\frac {3^{\frac {3}{4}} \left (-\frac {x \sqrt {2}\, \ln \left (1-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \ln \left (1+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}\right )}{2}-18 \ln \relax (x )-\frac {9 \ln \relax (3)}{2}-3 \,{\mathrm e}^{-2} 3^{\frac {1}{4}} \left (\frac {x^{3} \sqrt {2}\, \ln \left (1-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{2 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {3}{4}}}-\frac {x^{3} \sqrt {2}\, \ln \left (1+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\sqrt {3}\, \sqrt {x^{4}}\right )}{2 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, 3^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {3}{4}}}\right )\) | \(718\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 32, normalized size = 1.33 \begin {gather*} -6 \, {\left (x e^{2} - e^{2} \log \left (3 \, x^{4} + 1\right ) + 3 \, e^{2} \log \relax (x) - \frac {2}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 23, normalized size = 0.96 \begin {gather*} 6\,\ln \left (x^4+\frac {1}{3}\right )-6\,x-18\,\ln \relax (x)+\frac {12\,{\mathrm {e}}^{-2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 24, normalized size = 1.00 \begin {gather*} - 6 x - 18 \log {\relax (x )} + 6 \log {\left (3 x^{4} + 1 \right )} + \frac {12}{x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________