Optimal. Leaf size=24 \[ 1+\frac {1}{3+x}+5 (3+x)-\frac {25}{x (4+x)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 2, number of rules used = 1, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2074} \begin {gather*} 5 x+\frac {1}{x+3}+\frac {25}{4 (x+4)}-\frac {25}{4 x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5+\frac {25}{4 x^2}+\frac {1}{x}-\frac {1}{(3+x)^2}-\frac {25}{4 (4+x)^2}\right ) \, dx\\ &=-\frac {25}{4 x}+5 x+\frac {1}{3+x}+\frac {25}{4 (4+x)}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.33 \begin {gather*} -\frac {25}{4 x}+5 x+\frac {91+29 x}{4 \left (12+7 x+x^2\right )}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.44, size = 50, normalized size = 2.08 \begin {gather*} \frac {5 \, x^{4} + 35 \, x^{3} + 61 \, x^{2} + {\left (x^{3} + 7 \, x^{2} + 12 \, x\right )} \log \relax (x) - 21 \, x - 75}{x^{3} + 7 \, x^{2} + 12 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 29, normalized size = 1.21 \begin {gather*} 5 \, x + \frac {x^{2} - 21 \, x - 75}{{\left (x + 4\right )} {\left (x + 3\right )} x} + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.00
method | result | size |
default | \(5 x +\ln \relax (x )-\frac {25}{4 x}+\frac {25}{4 \left (4+x \right )}+\frac {1}{3+x}\) | \(24\) |
risch | \(5 x +\frac {x^{2}-21 x -75}{x \left (x^{2}+7 x +12\right )}+\ln \relax (x )\) | \(29\) |
norman | \(\frac {5 x^{4}-184 x^{2}-441 x -75}{x \left (x^{2}+7 x +12\right )}+\ln \relax (x )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 29, normalized size = 1.21 \begin {gather*} 5 \, x + \frac {x^{2} - 21 \, x - 75}{x^{3} + 7 \, x^{2} + 12 \, x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 32, normalized size = 1.33 \begin {gather*} 5\,x+\ln \relax (x)-\frac {-x^2+21\,x+75}{x^3+7\,x^2+12\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 26, normalized size = 1.08 \begin {gather*} 5 x + \frac {x^{2} - 21 x - 75}{x^{3} + 7 x^{2} + 12 x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________