Optimal. Leaf size=30 \[ \frac {-1+e^{x^2}+2 x}{x \left (25+\frac {3+\log \left (\frac {e}{2}\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 59, normalized size of antiderivative = 1.97, number of steps used = 4, number of rules used = 3, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6688, 6742, 2288} \begin {gather*} \frac {e^{x^2} \left (50 x^2+x (8-\log (4))\right )}{2 x (25 x+4-\log (2))^2}-\frac {33-\log (4)}{25 (25 x+4-\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {33 \left (1-\frac {2 \log (2)}{33}\right )+e^{x^2} \left (-25+50 x^2-x (-8+\log (4))\right )}{(4+25 x-\log (2))^2} \, dx\\ &=\int \left (\frac {e^{x^2} \left (-25+50 x^2+x (8-\log (4))\right )}{(4+25 x-\log (2))^2}+\frac {33-\log (4)}{(4+25 x-\log (2))^2}\right ) \, dx\\ &=-\frac {33-\log (4)}{25 (4+25 x-\log (2))}+\int \frac {e^{x^2} \left (-25+50 x^2+x (8-\log (4))\right )}{(4+25 x-\log (2))^2} \, dx\\ &=\frac {e^{x^2} \left (50 x^2+x (8-\log (4))\right )}{2 x (4+25 x-\log (2))^2}-\frac {33-\log (4)}{25 (4+25 x-\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 45, normalized size = 1.50 \begin {gather*} \frac {25 e^{x^2} (8+50 x-\log (4))+2 (4+25 x-\log (2)) (-33+\log (4))}{50 (-4-25 x+\log (2))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 25, normalized size = 0.83 \begin {gather*} \frac {25 \, e^{\left (x^{2}\right )} + 2 \, \log \relax (2) - 33}{25 \, {\left (25 \, x - \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 25, normalized size = 0.83 \begin {gather*} \frac {25 \, e^{\left (x^{2}\right )} + 2 \, \log \relax (2) - 33}{25 \, {\left (25 \, x - \log \relax (2) + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 23, normalized size = 0.77
method | result | size |
norman | \(\frac {-{\mathrm e}^{x^{2}}+\frac {33}{25}-\frac {2 \ln \relax (2)}{25}}{\ln \relax (2)-25 x -4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 50, normalized size = 1.67 \begin {gather*} \frac {e^{\left (x^{2}\right )}}{25 \, x - \log \relax (2) + 4} - \frac {2 \, \log \left (\frac {1}{2} \, e\right )}{25 \, {\left (25 \, x + \log \left (\frac {1}{2} \, e\right ) + 3\right )}} - \frac {31}{25 \, {\left (25 \, x + \log \left (\frac {1}{2} \, e\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 29, normalized size = 0.97 \begin {gather*} -\frac {\frac {\ln \left (\frac {{\mathrm {e}}^2}{4}\right )}{25}-{\mathrm {e}}^{x^2}+\frac {31}{25}}{25\,x+\ln \left (\frac {\mathrm {e}}{2}\right )+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 29, normalized size = 0.97 \begin {gather*} - \frac {33 - 2 \log {\relax (2 )}}{625 x - 25 \log {\relax (2 )} + 100} + \frac {e^{x^{2}}}{25 x - \log {\relax (2 )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________