Optimal. Leaf size=29 \[ e^{e^{\left (\frac {e^{2 x}}{x}-x\right ) \left (x+x^2\right )}}+5 e^x \]
________________________________________________________________________________________
Rubi [F] time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (5 e^x+\exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) \left (-2 x-3 x^2+e^{2 x} (3+2 x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 \int e^x \, dx+\int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) \left (-2 x-3 x^2+e^{2 x} (3+2 x)\right ) \, dx\\ &=5 e^x+\int \left (-2 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x-3 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2+\exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) (3+2 x)\right ) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx+\int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) (3+2 x) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx+\int \left (3 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right )+2 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) x\right ) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx+2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx+3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.15, size = 30, normalized size = 1.03 \begin {gather*} e^{e^{-x^2-x^3+e^{2 x} (1+x)}}+5 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 82, normalized size = 2.83 \begin {gather*} {\left (5 \, e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )}\right )}\right )} e^{\left (x^{3} + x^{2} - {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left (3 \, x^{2} - {\left (2 \, x + 3\right )} e^{\left (2 \, x\right )} + 2 \, x\right )} e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )}\right )} + 5 \, e^{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 0.79
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{-\left (x +1\right ) \left (x^{2}-{\mathrm e}^{2 x}\right )}}+5 \,{\mathrm e}^{x}\) | \(23\) |
default | \({\mathrm e}^{{\mathrm e}^{\left (x +1\right ) {\mathrm e}^{2 x}-x^{3}-x^{2}}}+5 \,{\mathrm e}^{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 28, normalized size = 0.97 \begin {gather*} 5 \, e^{x} + e^{\left (e^{\left (-x^{3} - x^{2} + x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 31, normalized size = 1.07 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}}+5\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 22, normalized size = 0.76 \begin {gather*} 5 e^{x} + e^{e^{- x^{3} - x^{2} + \left (x + 1\right ) e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________