3.89.64 \(\int (5 e^x+e^{e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)} (-2 x-3 x^2+e^{2 x} (3+2 x))) \, dx\)

Optimal. Leaf size=29 \[ e^{e^{\left (\frac {e^{2 x}}{x}-x\right ) \left (x+x^2\right )}}+5 e^x \]

________________________________________________________________________________________

Rubi [F]  time = 3.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (5 e^x+\exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) \left (-2 x-3 x^2+e^{2 x} (3+2 x)\right )\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[5*E^x + E^(E^(-x^2 - x^3 + E^(2*x)*(1 + x)) - x^2 - x^3 + E^(2*x)*(1 + x))*(-2*x - 3*x^2 + E^(2*x)*(3 + 2*
x)),x]

[Out]

5*E^x + 3*Defer[Int][E^(E^(-x^2 - x^3 + E^(2*x)*(1 + x)) + 2*x - x^2 - x^3 + E^(2*x)*(1 + x)), x] - 2*Defer[In
t][E^(E^(-x^2 - x^3 + E^(2*x)*(1 + x)) - x^2 - x^3 + E^(2*x)*(1 + x))*x, x] + 2*Defer[Int][E^(E^(-x^2 - x^3 +
E^(2*x)*(1 + x)) + 2*x - x^2 - x^3 + E^(2*x)*(1 + x))*x, x] - 3*Defer[Int][E^(E^(-x^2 - x^3 + E^(2*x)*(1 + x))
 - x^2 - x^3 + E^(2*x)*(1 + x))*x^2, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=5 \int e^x \, dx+\int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) \left (-2 x-3 x^2+e^{2 x} (3+2 x)\right ) \, dx\\ &=5 e^x+\int \left (-2 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x-3 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2+\exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) (3+2 x)\right ) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx+\int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) (3+2 x) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx+\int \left (3 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right )+2 \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) x\right ) \, dx\\ &=5 e^x-2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx+2 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) x \, dx+3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}+2 x-x^2-x^3+e^{2 x} (1+x)\right ) \, dx-3 \int \exp \left (e^{-x^2-x^3+e^{2 x} (1+x)}-x^2-x^3+e^{2 x} (1+x)\right ) x^2 \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 1.15, size = 30, normalized size = 1.03 \begin {gather*} e^{e^{-x^2-x^3+e^{2 x} (1+x)}}+5 e^x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[5*E^x + E^(E^(-x^2 - x^3 + E^(2*x)*(1 + x)) - x^2 - x^3 + E^(2*x)*(1 + x))*(-2*x - 3*x^2 + E^(2*x)*(
3 + 2*x)),x]

[Out]

E^E^(-x^2 - x^3 + E^(2*x)*(1 + x)) + 5*E^x

________________________________________________________________________________________

fricas [B]  time = 0.59, size = 82, normalized size = 2.83 \begin {gather*} {\left (5 \, e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )}\right )}\right )} e^{\left (x^{3} + x^{2} - {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+3)*exp(2*x)-3*x^2-2*x)*exp((x+1)*exp(2*x)-x^3-x^2)*exp(exp((x+1)*exp(2*x)-x^3-x^2))+5*exp(x),x
, algorithm="fricas")

[Out]

(5*e^(-x^3 - x^2 + (x + 1)*e^(2*x) + x) + e^(-x^3 - x^2 + (x + 1)*e^(2*x) + e^(-x^3 - x^2 + (x + 1)*e^(2*x))))
*e^(x^3 + x^2 - (x + 1)*e^(2*x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left (3 \, x^{2} - {\left (2 \, x + 3\right )} e^{\left (2 \, x\right )} + 2 \, x\right )} e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} + e^{\left (-x^{3} - x^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )}\right )}\right )} + 5 \, e^{x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+3)*exp(2*x)-3*x^2-2*x)*exp((x+1)*exp(2*x)-x^3-x^2)*exp(exp((x+1)*exp(2*x)-x^3-x^2))+5*exp(x),x
, algorithm="giac")

[Out]

integrate(-(3*x^2 - (2*x + 3)*e^(2*x) + 2*x)*e^(-x^3 - x^2 + (x + 1)*e^(2*x) + e^(-x^3 - x^2 + (x + 1)*e^(2*x)
)) + 5*e^x, x)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 23, normalized size = 0.79




method result size



risch \({\mathrm e}^{{\mathrm e}^{-\left (x +1\right ) \left (x^{2}-{\mathrm e}^{2 x}\right )}}+5 \,{\mathrm e}^{x}\) \(23\)
default \({\mathrm e}^{{\mathrm e}^{\left (x +1\right ) {\mathrm e}^{2 x}-x^{3}-x^{2}}}+5 \,{\mathrm e}^{x}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x+3)*exp(2*x)-3*x^2-2*x)*exp((x+1)*exp(2*x)-x^3-x^2)*exp(exp((x+1)*exp(2*x)-x^3-x^2))+5*exp(x),x,metho
d=_RETURNVERBOSE)

[Out]

exp(exp(-(x+1)*(x^2-exp(2*x))))+5*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.71, size = 28, normalized size = 0.97 \begin {gather*} 5 \, e^{x} + e^{\left (e^{\left (-x^{3} - x^{2} + x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+3)*exp(2*x)-3*x^2-2*x)*exp((x+1)*exp(2*x)-x^3-x^2)*exp(exp((x+1)*exp(2*x)-x^3-x^2))+5*exp(x),x
, algorithm="maxima")

[Out]

5*e^x + e^(e^(-x^3 - x^2 + x*e^(2*x) + e^(2*x)))

________________________________________________________________________________________

mupad [B]  time = 5.19, size = 31, normalized size = 1.07 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{-x^3}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}}+5\,{\mathrm {e}}^x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(5*exp(x) - exp(exp(exp(2*x)*(x + 1) - x^2 - x^3))*exp(exp(2*x)*(x + 1) - x^2 - x^3)*(2*x - exp(2*x)*(2*x +
 3) + 3*x^2),x)

[Out]

exp(exp(x*exp(2*x))*exp(-x^2)*exp(-x^3)*exp(exp(2*x))) + 5*exp(x)

________________________________________________________________________________________

sympy [A]  time = 0.64, size = 22, normalized size = 0.76 \begin {gather*} 5 e^{x} + e^{e^{- x^{3} - x^{2} + \left (x + 1\right ) e^{2 x}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+3)*exp(2*x)-3*x**2-2*x)*exp((x+1)*exp(2*x)-x**3-x**2)*exp(exp((x+1)*exp(2*x)-x**3-x**2))+5*exp
(x),x)

[Out]

5*exp(x) + exp(exp(-x**3 - x**2 + (x + 1)*exp(2*x)))

________________________________________________________________________________________