Optimal. Leaf size=28 \[ 3-e^{e^{e^{x^4 \left (e^e+x\right )^2}}+2 x}+3 x \]
________________________________________________________________________________________
Rubi [F] time = 10.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (3+e^{e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+x} \left (-2 e^x+\exp \left (e^{e^{2 e} x^4+2 e^e x^5+x^6}+e^{2 e} x^4+2 e^e x^5+x^6\right ) \left (-4 e^{2 e+x} x^3-10 e^{e+x} x^4-6 e^x x^5\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=3 x+\int e^{e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+x} \left (-2 e^x+\exp \left (e^{e^{2 e} x^4+2 e^e x^5+x^6}+e^{2 e} x^4+2 e^e x^5+x^6\right ) \left (-4 e^{2 e+x} x^3-10 e^{e+x} x^4-6 e^x x^5\right )\right ) \, dx\\ &=3 x+\int \left (-2 e^{e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+2 x}-2 \exp \left (e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^3 \left (2 e^{2 e}+5 e^e x+3 x^2\right )\right ) \, dx\\ &=3 x-2 \int e^{e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+2 x} \, dx-2 \int \exp \left (e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^3 \left (2 e^{2 e}+5 e^e x+3 x^2\right ) \, dx\\ &=3 x-2 \int e^{e^{e^{x^4 \left (e^e+x\right )^2}}+2 x} \, dx-2 \int \left (2 \exp \left (2 e+e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^3+5 \exp \left (e+e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^4+3 \exp \left (e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^5\right ) \, dx\\ &=3 x-2 \int e^{e^{e^{x^4 \left (e^e+x\right )^2}}+2 x} \, dx-4 \int \exp \left (2 e+e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^3 \, dx-6 \int \exp \left (e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^5 \, dx-10 \int \exp \left (e+e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+e^{x^4 \left (e^e+x\right )^2}+2 x+e^{2 e} x^4+2 e^e x^5+x^6\right ) x^4 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 37, normalized size = 1.32 \begin {gather*} -e^{e^{e^{e^{2 e} x^4+2 e^e x^5+x^6}}+2 x}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 119, normalized size = 4.25 \begin {gather*} {\left (3 \, x e^{\left (2 \, e\right )} - e^{\left ({\left (x e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )}\right )} + e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )} + e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )}\right )}\right )}\right )} e^{\left (-x^{6} - 2 \, x^{5} e^{e} - x^{4} e^{\left (2 \, e\right )}\right )} + x + 2 \, e\right )}\right )} e^{\left (-2 \, e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -2 \, {\left ({\left (3 \, x^{5} e^{x} + 5 \, x^{4} e^{\left (x + e\right )} + 2 \, x^{3} e^{\left (x + 2 \, e\right )}\right )} e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )} + e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )}\right )}\right )} + e^{x}\right )} e^{\left (x + e^{\left (e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )}\right )}\right )}\right )} + 3\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 33, normalized size = 1.18
method | result | size |
risch | \(-{\mathrm e}^{2 x +{\mathrm e}^{{\mathrm e}^{x^{4} \left (2 x \,{\mathrm e}^{{\mathrm e}}+x^{2}+{\mathrm e}^{2 \,{\mathrm e}}\right )}}}+3 x\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 34, normalized size = 1.21 \begin {gather*} 3 \, x - e^{\left (2 \, x + e^{\left (e^{\left (x^{6} + 2 \, x^{5} e^{e} + x^{4} e^{\left (2 \, e\right )}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.53, size = 36, normalized size = 1.29 \begin {gather*} 3\,x-{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{x^6}\,{\mathrm {e}}^{2\,x^5\,{\mathrm {e}}^{\mathrm {e}}}\,{\mathrm {e}}^{x^4\,{\mathrm {e}}^{2\,\mathrm {e}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________