Optimal. Leaf size=32 \[ \frac {5 e^{\frac {e^x+\frac {1}{4} e^{-e^x x^2} x^2}{x}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 6.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-e^x x^2+\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (5 x^2+e^x \left (-10 x^4-5 x^5\right )+e^{e^x x^2} \left (-20 x+e^x (-20+20 x)\right )\right )}{4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {\exp \left (-e^x x^2+\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (5 x^2+e^x \left (-10 x^4-5 x^5\right )+e^{e^x x^2} \left (-20 x+e^x (-20+20 x)\right )\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \left (\frac {20 \exp \left (\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (-e^x-x+e^x x\right )}{x^3}-\frac {5 \exp \left (-e^x x^2+\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (-1+2 e^x x^2+e^x x^3\right )}{x}\right ) \, dx\\ &=-\left (\frac {5}{4} \int \frac {\exp \left (-e^x x^2+\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (-1+2 e^x x^2+e^x x^3\right )}{x} \, dx\right )+5 \int \frac {\exp \left (\frac {e^{-e^x x^2} \left (4 e^{x+e^x x^2}+x^2\right )}{4 x}\right ) \left (-e^x-x+e^x x\right )}{x^3} \, dx\\ &=-\left (\frac {5}{4} \int \frac {e^{\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} \left (-1+e^x x^2 (2+x)\right )}{x} \, dx\right )+5 \int \frac {e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x} \left (e^x (-1+x)-x\right )}{x^3} \, dx\\ &=-\left (\frac {5}{4} \int \left (-\frac {e^{\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )}}{x}+e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x (2+x)\right ) \, dx\right )+5 \int \left (\frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x} (-1+x)}{x^3}-\frac {e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x}}{x^2}\right ) \, dx\\ &=\frac {5}{4} \int \frac {e^{\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )}}{x} \, dx-\frac {5}{4} \int e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x (2+x) \, dx+5 \int \frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x} (-1+x)}{x^3} \, dx-5 \int \frac {e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x}}{x^2} \, dx\\ &=\frac {5}{4} \int \frac {e^{\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )}}{x} \, dx-\frac {5}{4} \int \left (2 e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x+e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x^2\right ) \, dx+5 \int \left (-\frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x}}{x^3}+\frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x}}{x^2}\right ) \, dx-5 \int \frac {e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x}}{x^2} \, dx\\ &=\frac {5}{4} \int \frac {e^{\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )}}{x} \, dx-\frac {5}{4} \int e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x^2 \, dx-\frac {5}{2} \int e^{x+\frac {1}{4} e^{-e^x x^2} x+e^x \left (\frac {1}{x}-x^2\right )} x \, dx-5 \int \frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x}}{x^3} \, dx-5 \int \frac {e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x}}{x^2} \, dx+5 \int \frac {e^{\frac {e^x}{x}+x+\frac {1}{4} e^{-e^x x^2} x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 4.18, size = 30, normalized size = 0.94 \begin {gather*} \frac {5 e^{\frac {e^x}{x}+\frac {1}{4} e^{-e^x x^2} x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 55, normalized size = 1.72 \begin {gather*} \frac {5 \, e^{\left (x^{2} e^{x} + \frac {{\left (x^{2} e^{x} - 4 \, {\left (x^{3} - 1\right )} e^{\left (x^{2} e^{x} + 2 \, x\right )}\right )} e^{\left (-x^{2} e^{x} - x\right )}}{4 \, x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (x^{2} + 4 \, {\left ({\left (x - 1\right )} e^{x} - x\right )} e^{\left (x^{2} e^{x}\right )} - {\left (x^{5} + 2 \, x^{4}\right )} e^{x}\right )} e^{\left (-x^{2} e^{x} + \frac {{\left (x^{2} + 4 \, e^{\left (x^{2} e^{x} + x\right )}\right )} e^{\left (-x^{2} e^{x}\right )}}{4 \, x}\right )}}{4 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 35, normalized size = 1.09
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{\frac {\left (4 \,{\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}+x^{2}\right ) {\mathrm e}^{-{\mathrm e}^{x} x^{2}}}{4 x}}}{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 24, normalized size = 0.75 \begin {gather*} \frac {5 \, e^{\left (\frac {1}{4} \, x e^{\left (-x^{2} e^{x}\right )} + \frac {e^{x}}{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.29, size = 24, normalized size = 0.75 \begin {gather*} \frac {5\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x}+\frac {x\,{\mathrm {e}}^{-x^2\,{\mathrm {e}}^x}}{4}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 31, normalized size = 0.97 \begin {gather*} \frac {5 e^{\frac {\left (\frac {x^{2}}{4} + e^{x} e^{x^{2} e^{x}}\right ) e^{- x^{2} e^{x}}}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________