Optimal. Leaf size=27 \[ -4+e^{3-2 (e-x)+\frac {5 x}{4}+\frac {5}{2+x}} x \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right ) \left (16+48 x+56 x^2+13 x^3\right )}{16 x+16 x^2+4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right ) \left (16+48 x+56 x^2+13 x^3\right )}{x \left (16+16 x+4 x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right ) \left (16+48 x+56 x^2+13 x^3\right )}{4 x (2+x)^2} \, dx\\ &=\frac {1}{4} \int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right ) \left (16+48 x+56 x^2+13 x^3\right )}{x (2+x)^2} \, dx\\ &=\frac {1}{4} \int \left (13 \exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right )+\frac {4 \exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right )}{x}-\frac {20 \exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right )}{(2+x)^2}\right ) \, dx\\ &=\frac {13}{4} \int \exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right ) \, dx-5 \int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right )}{(2+x)^2} \, dx+\int \frac {\exp \left (\frac {44+e (-16-8 x)+38 x+13 x^2+(8+4 x) \log (x)}{8+4 x}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 21, normalized size = 0.78 \begin {gather*} e^{3-2 e+\frac {13 x}{4}+\frac {5}{2+x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 32, normalized size = 1.19 \begin {gather*} e^{\left (\frac {13 \, x^{2} - 8 \, {\left (x + 2\right )} e + 4 \, {\left (x + 2\right )} \log \relax (x) + 38 \, x + 44}{4 \, {\left (x + 2\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 64, normalized size = 2.37 \begin {gather*} e^{\left (\frac {13 \, x^{2}}{4 \, {\left (x + 2\right )}} - \frac {2 \, x e}{x + 2} + \frac {x \log \relax (x)}{x + 2} + \frac {19 \, x}{2 \, {\left (x + 2\right )}} - \frac {4 \, e}{x + 2} + \frac {2 \, \log \relax (x)}{x + 2} + \frac {11}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 37, normalized size = 1.37
method | result | size |
gosper | \({\mathrm e}^{\frac {4 x \ln \relax (x )-8 x \,{\mathrm e}+13 x^{2}+8 \ln \relax (x )-16 \,{\mathrm e}+38 x +44}{4 x +8}}\) | \(37\) |
risch | \({\mathrm e}^{-\frac {-4 x \ln \relax (x )+8 x \,{\mathrm e}-13 x^{2}-8 \ln \relax (x )+16 \,{\mathrm e}-38 x -44}{4 \left (2+x \right )}}\) | \(37\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {\left (4 x +8\right ) \ln \relax (x )+\left (-8 x -16\right ) {\mathrm e}+13 x^{2}+38 x +44}{4 x +8}}+2 \,{\mathrm e}^{\frac {\left (4 x +8\right ) \ln \relax (x )+\left (-8 x -16\right ) {\mathrm e}+13 x^{2}+38 x +44}{4 x +8}}}{2+x}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{4} \, \int \frac {{\left (13 \, x^{3} + 56 \, x^{2} + 48 \, x + 16\right )} e^{\left (\frac {13 \, x^{2} - 8 \, {\left (x + 2\right )} e + 4 \, {\left (x + 2\right )} \log \relax (x) + 38 \, x + 44}{4 \, {\left (x + 2\right )}}\right )}}{x^{3} + 4 \, x^{2} + 4 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 55, normalized size = 2.04 \begin {gather*} x\,{\mathrm {e}}^{\frac {13\,x^2}{4\,x+8}}\,{\mathrm {e}}^{-\frac {4\,\mathrm {e}}{x+2}}\,{\mathrm {e}}^{\frac {19\,x}{2\,x+4}}\,{\mathrm {e}}^{-\frac {2\,x\,\mathrm {e}}{x+2}}\,{\mathrm {e}}^{\frac {11}{x+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________