Optimal. Leaf size=23 \[ 4+\frac {1}{2} (-3+2 x)+\frac {-x+\log (-27+x)}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.87, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 186, 43} \begin {gather*} \left (1-\frac {1}{e^4}\right ) x+\frac {\log (27-x)}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {28+e^4 (-27+x)-x}{-27+x} \, dx}{e^4}\\ &=\frac {\int \frac {28-27 e^4-\left (1-e^4\right ) x}{-27+x} \, dx}{e^4}\\ &=\frac {\int \left (-1+e^4+\frac {1}{-27+x}\right ) \, dx}{e^4}\\ &=\left (1-\frac {1}{e^4}\right ) x+\frac {\log (27-x)}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 18, normalized size = 0.78 \begin {gather*} \frac {\left (-1+e^4\right ) (-27+x)+\log (-27+x)}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 15, normalized size = 0.65 \begin {gather*} {\left (x e^{4} - x + \log \left (x - 27\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 16, normalized size = 0.70 \begin {gather*} {\left (x e^{4} - x + \log \left ({\left | x - 27 \right |}\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 18, normalized size = 0.78
method | result | size |
default | \({\mathrm e}^{-4} \left (x \,{\mathrm e}^{4}-x +\ln \left (x -27\right )\right )\) | \(18\) |
risch | \({\mathrm e}^{-4} x \,{\mathrm e}^{4}-{\mathrm e}^{-4} x +{\mathrm e}^{-4} \ln \left (x -27\right )\) | \(20\) |
norman | \(\left ({\mathrm e}^{4}-1\right ) {\mathrm e}^{-4} x +{\mathrm e}^{-4} \ln \left (x -27\right )\) | \(21\) |
meijerg | \(28 \,{\mathrm e}^{-4} \ln \left (1-\frac {x}{27}\right )+729 \left (-\frac {{\mathrm e}^{4}}{27}+\frac {1}{27}\right ) {\mathrm e}^{-4} \left (-\frac {x}{27}-\ln \left (1-\frac {x}{27}\right )\right )-27 \ln \left (1-\frac {x}{27}\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 14, normalized size = 0.61 \begin {gather*} {\left (x {\left (e^{4} - 1\right )} + \log \left (x - 27\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.63, size = 16, normalized size = 0.70 \begin {gather*} \ln \left (x-27\right )\,{\mathrm {e}}^{-4}+x\,{\mathrm {e}}^{-4}\,\left ({\mathrm {e}}^4-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 15, normalized size = 0.65 \begin {gather*} - x \left (-1 + e^{-4}\right ) + \frac {\log {\left (x - 27 \right )}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________