Optimal. Leaf size=31 \[ \frac {\left (-x+\frac {1}{(5+x)^2}\right )^2 \log ^2\left (2 x^2\right )}{-2 e^{x^2}+x} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 43, normalized size = 1.39 \begin {gather*} -\frac {\left (-1+25 x+10 x^2+x^3\right )^2 \log ^2\left (2 x^2\right )}{\left (2 e^{x^2}-x\right ) (5+x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 85, normalized size = 2.74 \begin {gather*} \frac {{\left (x^{6} + 20 \, x^{5} + 150 \, x^{4} + 498 \, x^{3} + 605 \, x^{2} - 50 \, x + 1\right )} \log \left (2 \, x^{2}\right )^{2}}{x^{5} + 20 \, x^{4} + 150 \, x^{3} + 500 \, x^{2} - 2 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )} e^{\left (x^{2}\right )} + 625 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.58, size = 149, normalized size = 4.81 \begin {gather*} \frac {x^{6} \log \left (2 \, x^{2}\right )^{2} + 20 \, x^{5} \log \left (2 \, x^{2}\right )^{2} + 150 \, x^{4} \log \left (2 \, x^{2}\right )^{2} + 498 \, x^{3} \log \left (2 \, x^{2}\right )^{2} + 605 \, x^{2} \log \left (2 \, x^{2}\right )^{2} - 50 \, x \log \left (2 \, x^{2}\right )^{2} + \log \left (2 \, x^{2}\right )^{2}}{x^{5} - 2 \, x^{4} e^{\left (x^{2}\right )} + 20 \, x^{4} - 40 \, x^{3} e^{\left (x^{2}\right )} + 150 \, x^{3} - 300 \, x^{2} e^{\left (x^{2}\right )} + 500 \, x^{2} - 1000 \, x e^{\left (x^{2}\right )} + 625 \, x - 1250 \, e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.01, size = 1812, normalized size = 58.45
method | result | size |
risch | \(\frac {4 \left (x^{6}+20 x^{5}+150 x^{4}+498 x^{3}+605 x^{2}-50 x +1\right ) \ln \relax (x )^{2}}{\left (x^{4}+20 x^{3}+150 x^{2}+500 x +625\right ) \left (x -2 \,{\mathrm e}^{x^{2}}\right )}+\frac {2 \left (2 \ln \relax (2)+300 x^{4} \ln \relax (2)+40 x^{5} \ln \relax (2)+2 x^{6} \ln \relax (2)-100 x \ln \relax (2)+1210 x^{2} \ln \relax (2)+996 x^{3} \ln \relax (2)-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \,x^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}-20 i \pi \,x^{5} \mathrm {csgn}\left (i x^{2}\right )^{3}-150 i \pi \,x^{4} \mathrm {csgn}\left (i x^{2}\right )^{3}-498 i \pi \,x^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+50 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-605 i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}-20 i \pi \,x^{5} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+40 i \pi \,x^{5} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-150 i \pi \,x^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+300 i \pi \,x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-498 i \pi \,x^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+996 i \pi \,x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \,x^{6} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,x^{6} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+50 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-100 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-605 i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+1210 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) \ln \relax (x )}{\left (5+x \right ) \left (x^{3}+15 x^{2}+75 x +125\right ) \left (x -2 \,{\mathrm e}^{x^{2}}\right )}+\frac {4 x^{6} \ln \relax (2)^{2}+4 \ln \relax (2)^{2}+80 x^{5} \ln \relax (2)^{2}+600 x^{4} \ln \relax (2)^{2}+1992 x^{3} \ln \relax (2)^{2}-200 x \ln \relax (2)^{2}+2420 x^{2} \ln \relax (2)^{2}-605 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+2420 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-3630 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+2420 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-605 \pi ^{2} x^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}+50 x \,\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-498 \pi ^{2} x^{3} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+1992 \pi ^{2} x^{3} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi ^{2} x^{6} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 \pi ^{2} x^{6} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 \pi ^{2} x^{6} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 \pi ^{2} x^{6} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-4 i \ln \relax (2) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-20 \pi ^{2} x^{5} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+80 \pi ^{2} x^{5} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-120 \pi ^{2} x^{5} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+80 \pi ^{2} x^{5} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-150 \pi ^{2} x^{4} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+600 \pi ^{2} x^{4} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-1992 i \pi \ln \relax (2) x^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-2420 i \pi \ln \relax (2) x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}+200 i \pi \ln \relax (2) x \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i \pi \ln \relax (2) x^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}-80 i \pi \ln \relax (2) x^{5} \mathrm {csgn}\left (i x^{2}\right )^{3}-600 i \pi \ln \relax (2) x^{4} \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i \ln \relax (2) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi ^{2} x^{6} \mathrm {csgn}\left (i x^{2}\right )^{6}-20 \pi ^{2} x^{5} \mathrm {csgn}\left (i x^{2}\right )^{6}-150 \pi ^{2} x^{4} \mathrm {csgn}\left (i x^{2}\right )^{6}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )-6 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}-498 \pi ^{2} x^{3} \mathrm {csgn}\left (i x^{2}\right )^{6}+50 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-200 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}+300 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}-200 x \,\pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+4 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}+1992 \pi ^{2} x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-2988 \pi ^{2} x^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}-900 \pi ^{2} x^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+600 \pi ^{2} x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+200 i \pi \ln \relax (2) x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-400 i \pi \ln \relax (2) x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-80 i \pi \ln \relax (2) x^{5} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+160 i \pi \ln \relax (2) x^{5} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-600 i \pi \ln \relax (2) x^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+1200 i \pi \ln \relax (2) x^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-1992 i \pi \ln \relax (2) x^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+3984 i \pi \ln \relax (2) x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2420 i \pi \ln \relax (2) x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4840 i \pi \ln \relax (2) x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-4 i \pi \ln \relax (2) x^{6} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+8 i \pi \ln \relax (2) x^{6} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{4 \left (x^{4}+20 x^{3}+150 x^{2}+500 x +625\right ) \left (x -2 \,{\mathrm e}^{x^{2}}\right )}\) | \(1812\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 185, normalized size = 5.97 \begin {gather*} \frac {x^{6} \log \relax (2)^{2} + 20 \, x^{5} \log \relax (2)^{2} + 150 \, x^{4} \log \relax (2)^{2} + 498 \, x^{3} \log \relax (2)^{2} + 605 \, x^{2} \log \relax (2)^{2} - 50 \, x \log \relax (2)^{2} + 4 \, {\left (x^{6} + 20 \, x^{5} + 150 \, x^{4} + 498 \, x^{3} + 605 \, x^{2} - 50 \, x + 1\right )} \log \relax (x)^{2} + \log \relax (2)^{2} + 4 \, {\left (x^{6} \log \relax (2) + 20 \, x^{5} \log \relax (2) + 150 \, x^{4} \log \relax (2) + 498 \, x^{3} \log \relax (2) + 605 \, x^{2} \log \relax (2) - 50 \, x \log \relax (2) + \log \relax (2)\right )} \log \relax (x)}{x^{5} + 20 \, x^{4} + 150 \, x^{3} + 500 \, x^{2} - 2 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )} e^{\left (x^{2}\right )} + 625 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 39, normalized size = 1.26 \begin {gather*} \frac {{\ln \left (2\,x^2\right )}^2\,{\left (x^3+10\,x^2+25\,x-1\right )}^2}{\left (x-2\,{\mathrm {e}}^{x^2}\right )\,{\left (x+5\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.75, size = 133, normalized size = 4.29 \begin {gather*} \frac {- x^{6} \log {\left (2 x^{2} \right )}^{2} - 20 x^{5} \log {\left (2 x^{2} \right )}^{2} - 150 x^{4} \log {\left (2 x^{2} \right )}^{2} - 498 x^{3} \log {\left (2 x^{2} \right )}^{2} - 605 x^{2} \log {\left (2 x^{2} \right )}^{2} + 50 x \log {\left (2 x^{2} \right )}^{2} - \log {\left (2 x^{2} \right )}^{2}}{- x^{5} - 20 x^{4} - 150 x^{3} - 500 x^{2} - 625 x + \left (2 x^{4} + 40 x^{3} + 300 x^{2} + 1000 x + 1250\right ) e^{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________