Optimal. Leaf size=27 \[ x-\log (3)+\frac {5 \left (4-x+\log \left (x \log ^2(x) \log (2 x)\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [C] time = 0.57, antiderivative size = 50, normalized size of antiderivative = 1.85, number of steps used = 17, number of rules used = 8, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.151, Rules used = {6688, 14, 2309, 2178, 30, 2555, 2366, 6482} \begin {gather*} 10 \text {Ei}(-\log (x))+5 \log (x) \text {Ei}(-\log (x))-5 (\log (x)+2) \text {Ei}(-\log (x))+x+\frac {20}{x}+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 2178
Rule 2309
Rule 2366
Rule 2555
Rule 6482
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15+x^2+\frac {10}{\log (x)}+\frac {5}{\log (2 x)}-5 \log \left (x \log ^2(x) \log (2 x)\right )}{x^2} \, dx\\ &=\int \left (\frac {5 \log (x)+10 \log (2 x)-15 \log (x) \log (2 x)+x^2 \log (x) \log (2 x)}{x^2 \log (x) \log (2 x)}-\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x^2}\right ) \, dx\\ &=-\left (5 \int \frac {\log \left (x \log ^2(x) \log (2 x)\right )}{x^2} \, dx\right )+\int \frac {5 \log (x)+10 \log (2 x)-15 \log (x) \log (2 x)+x^2 \log (x) \log (2 x)}{x^2 \log (x) \log (2 x)} \, dx\\ &=\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}-5 \int \frac {1+\frac {2}{\log (x)}+\frac {1}{\log (2 x)}}{x^2} \, dx+\int \left (1-\frac {15}{x^2}+\frac {10}{x^2 \log (x)}+\frac {5}{x^2 \log (2 x)}\right ) \, dx\\ &=\frac {15}{x}+x+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}-5 \int \left (\frac {2+\log (x)}{x^2 \log (x)}+\frac {1}{x^2 \log (2 x)}\right ) \, dx+5 \int \frac {1}{x^2 \log (2 x)} \, dx+10 \int \frac {1}{x^2 \log (x)} \, dx\\ &=\frac {15}{x}+x+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}-5 \int \frac {2+\log (x)}{x^2 \log (x)} \, dx-5 \int \frac {1}{x^2 \log (2 x)} \, dx+10 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+10 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (2 x)\right )\\ &=\frac {15}{x}+x+10 \text {Ei}(-\log (x))+10 \text {Ei}(-\log (2 x))-5 \text {Ei}(-\log (x)) (2+\log (x))+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}+5 \int \frac {\text {Ei}(-\log (x))}{x} \, dx-10 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (2 x)\right )\\ &=\frac {15}{x}+x+10 \text {Ei}(-\log (x))-5 \text {Ei}(-\log (x)) (2+\log (x))+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}+5 \operatorname {Subst}(\int \text {Ei}(-x) \, dx,x,\log (x))\\ &=\frac {20}{x}+x+10 \text {Ei}(-\log (x))+5 \text {Ei}(-\log (x)) \log (x)-5 \text {Ei}(-\log (x)) (2+\log (x))+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 23, normalized size = 0.85 \begin {gather*} \frac {20}{x}+x+\frac {5 \log \left (x \log ^2(x) \log (2 x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 27, normalized size = 1.00 \begin {gather*} \frac {x^{2} + 5 \, \log \left (x \log \relax (2) \log \relax (x)^{2} + x \log \relax (x)^{3}\right ) + 20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 32, normalized size = 1.19 \begin {gather*} x + \frac {5 \, \log \left (\log \relax (2) \log \relax (x)^{2} + \log \relax (x)^{3}\right )}{x} + \frac {5 \, \log \relax (x)}{x} + \frac {20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.60, size = 530, normalized size = 19.63
method | result | size |
risch | \(\frac {5 \ln \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )}{x}-\frac {5 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right )+5 i \pi \,\mathrm {csgn}\left (i \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-5 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right )^{2}-10 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{2}+5 i \pi \mathrm {csgn}\left (i \ln \relax (x )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )-5 i \pi \mathrm {csgn}\left (x \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{2}+5 i \pi \,\mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (x \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )-5 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right )^{2}-5 i \pi \,\mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (x \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{2}+5 i \pi \mathrm {csgn}\left (i x \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right ) \ln \relax (x )^{2}\right )^{3}+5 i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{3}-5 i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )+5 i \pi \mathrm {csgn}\left (i \ln \relax (x )^{2}\right )^{3}+5 i \pi \mathrm {csgn}\left (x \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{3}-5 i \pi \,\mathrm {csgn}\left (i \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \relax (x )^{2} \left (2 i \ln \relax (2)+2 i \ln \relax (x )\right )\right )^{2}+5 i \pi -2 x^{2}+10 \ln \relax (2)-10 \ln \relax (x )-20 \ln \left (\ln \relax (x )\right )-40}{2 x}\) | \(530\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \frac {5 \, {\left (\log \relax (x) + \log \left (\log \relax (2) + \log \relax (x)\right ) + 2 \, \log \left (\log \relax (x)\right ) + 1\right )}}{x} + \frac {15}{x} + 10 \, {\rm Ei}\left (-\log \left (2 \, x\right )\right ) + 10 \, {\rm Ei}\left (-\log \relax (x)\right ) - 5 \, \int \frac {1}{x^{2} \log \relax (2) + x^{2} \log \relax (x)}\,{d x} - 10 \, \int \frac {1}{x^{2} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.80, size = 21, normalized size = 0.78 \begin {gather*} x+\frac {5\,\ln \left (x\,\ln \left (2\,x\right )\,{\ln \relax (x)}^2\right )+20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 22, normalized size = 0.81 \begin {gather*} x + \frac {5 \log {\left (x \left (\log {\relax (x )} + \log {\relax (2 )}\right ) \log {\relax (x )}^{2} \right )}}{x} + \frac {20}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________