Optimal. Leaf size=21 \[ \frac {x^2 \log (4)}{\left (-e^3+3 e^{-x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{3+3 x} x \log (4)+e^{2 x} \left (-6 x-6 x^2\right ) \log (4)}{-27+27 e^{3+x}-9 e^{6+2 x}+e^{9+3 x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{2 x} x \left (-e^{3+x}+3 (1+x)\right ) \log (4)}{\left (3-e^{3+x}\right )^3} \, dx\\ &=(2 \log (4)) \int \frac {e^{2 x} x \left (-e^{3+x}+3 (1+x)\right )}{\left (3-e^{3+x}\right )^3} \, dx\\ &=(2 \log (4)) \int \left (\frac {e^{2 x} x}{\left (-3+e^{3+x}\right )^2}-\frac {3 e^{2 x} x^2}{\left (-3+e^{3+x}\right )^3}\right ) \, dx\\ &=(2 \log (4)) \int \frac {e^{2 x} x}{\left (-3+e^{3+x}\right )^2} \, dx-(6 \log (4)) \int \frac {e^{2 x} x^2}{\left (-3+e^{3+x}\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 20, normalized size = 0.95 \begin {gather*} \frac {e^{2 x} x^2 \log (4)}{\left (-3+e^{3+x}\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.52 \begin {gather*} \frac {2 \, x^{2} e^{\left (2 \, x + 6\right )} \log \relax (2)}{9 \, e^{6} + e^{\left (2 \, x + 12\right )} - 6 \, e^{\left (x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 27, normalized size = 1.29 \begin {gather*} \frac {2 \, x^{2} e^{\left (2 \, x\right )} \log \relax (2)}{e^{\left (2 \, x + 6\right )} - 6 \, e^{\left (x + 3\right )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 21, normalized size = 1.00
method | result | size |
norman | \(\frac {2 x^{2} \ln \relax (2) {\mathrm e}^{2 x}}{\left ({\mathrm e}^{x} {\mathrm e}^{3}-3\right )^{2}}\) | \(21\) |
risch | \(2 \,{\mathrm e}^{-6} x^{2} \ln \relax (2)+\frac {6 \ln \relax (2) x^{2} \left (2 \,{\mathrm e}^{3+x}-3\right ) {\mathrm e}^{-6}}{\left ({\mathrm e}^{3+x}-3\right )^{2}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 127, normalized size = 6.05 \begin {gather*} 2 \, e^{\left (-6\right )} \log \relax (2) \log \left ({\left (e^{\left (x + 3\right )} - 3\right )} e^{\left (-3\right )}\right ) - 2 \, {\left (e^{\left (-6\right )} \log \left ({\left (e^{\left (x + 3\right )} - 3\right )} e^{\left (-3\right )}\right ) - \frac {x e^{\left (2 \, x + 6\right )} + 3 \, e^{\left (x + 3\right )} - 9}{9 \, e^{6} + e^{\left (2 \, x + 12\right )} - 6 \, e^{\left (x + 9\right )}}\right )} \log \relax (2) + \frac {2 \, {\left ({\left (x^{2} e^{6} \log \relax (2) - x e^{6} \log \relax (2)\right )} e^{\left (2 \, x\right )} - 3 \, e^{\left (x + 3\right )} \log \relax (2) + 9 \, \log \relax (2)\right )}}{9 \, e^{6} + e^{\left (2 \, x + 12\right )} - 6 \, e^{\left (x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 33, normalized size = 1.57 \begin {gather*} \frac {2\,x^2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^6\,\ln \relax (2)}{9\,{\mathrm {e}}^6+{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{12}-6\,{\mathrm {e}}^9\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 56, normalized size = 2.67 \begin {gather*} \frac {2 x^{2} \log {\relax (2 )}}{e^{6}} + \frac {12 x^{2} e^{3} e^{x} \log {\relax (2 )} - 18 x^{2} \log {\relax (2 )}}{e^{12} e^{2 x} - 6 e^{9} e^{x} + 9 e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________