Optimal. Leaf size=24 \[ e^{\left (e^{2 e^{2 e^5}}+x\right ) \left (2 e^3+\log (x)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.23, antiderivative size = 33, normalized size of antiderivative = 1.38, number of steps used = 2, number of rules used = 2, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6, 6706} \begin {gather*} x^x e^{2 e^3 x+e^{2 e^{2 e^5}} \left (\log (x)+2 e^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (2 e^3 x+x \log (x)+e^{2 e^{2 e^5}} \left (2 e^3+\log (x)\right )\right ) \left (e^{2 e^{2 e^5}}+\left (1+2 e^3\right ) x+x \log (x)\right )}{x} \, dx\\ &=e^{2 e^3 x+e^{2 e^{2 e^5}} \left (2 e^3+\log (x)\right )} x^x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 36, normalized size = 1.50 \begin {gather*} e^{2 e^3 \left (e^{2 e^{2 e^5}}+x\right )} x^{e^{2 e^{2 e^5}}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 27, normalized size = 1.12 \begin {gather*} e^{\left (2 \, x e^{3} + {\left (2 \, e^{3} + \log \relax (x)\right )} e^{\left (2 \, e^{\left (2 \, e^{5}\right )}\right )} + x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 34, normalized size = 1.42 \begin {gather*} e^{\left (2 \, x e^{3} + x \log \relax (x) + e^{\left (2 \, e^{\left (2 \, e^{5}\right )}\right )} \log \relax (x) + 2 \, e^{\left (2 \, e^{\left (2 \, e^{5}\right )} + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.17
method | result | size |
norman | \({\mathrm e}^{\left (\ln \relax (x )+2 \,{\mathrm e}^{3}\right ) {\mathrm e}^{2 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}}+x \ln \relax (x )+2 x \,{\mathrm e}^{3}}\) | \(28\) |
risch | \(x^{x} x^{{\mathrm e}^{2 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}}} {\mathrm e}^{2 \,{\mathrm e}^{2 \,{\mathrm e}^{2 \,{\mathrm e}^{5}}+3}+2 x \,{\mathrm e}^{3}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 34, normalized size = 1.42 \begin {gather*} e^{\left (2 \, x e^{3} + x \log \relax (x) + e^{\left (2 \, e^{\left (2 \, e^{5}\right )}\right )} \log \relax (x) + 2 \, e^{\left (2 \, e^{\left (2 \, e^{5}\right )} + 3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 32, normalized size = 1.33 \begin {gather*} x^{x+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,{\mathrm {e}}^5}}}\,{\mathrm {e}}^{2\,{\mathrm {e}}^3\,{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,{\mathrm {e}}^5}}}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 31, normalized size = 1.29 \begin {gather*} e^{x \log {\relax (x )} + 2 x e^{3} + \left (\log {\relax (x )} + 2 e^{3}\right ) e^{2 e^{2 e^{5}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________