3.88.58 \(\int -\frac {4}{x^2-2 x \log (\frac {3}{2})+\log ^2(\frac {3}{2})} \, dx\)

Optimal. Leaf size=12 \[ \frac {4}{x-\log \left (\frac {3}{2}\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 27, 32} \begin {gather*} \frac {4}{x-\log \left (\frac {3}{2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[-4/(x^2 - 2*x*Log[3/2] + Log[3/2]^2),x]

[Out]

4/(x - Log[3/2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\left (4 \int \frac {1}{x^2-2 x \log \left (\frac {3}{2}\right )+\log ^2\left (\frac {3}{2}\right )} \, dx\right )\\ &=-\left (4 \int \frac {1}{\left (x-\log \left (\frac {3}{2}\right )\right )^2} \, dx\right )\\ &=\frac {4}{x-\log \left (\frac {3}{2}\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 12, normalized size = 1.00 \begin {gather*} \frac {4}{x-\log \left (\frac {3}{2}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[-4/(x^2 - 2*x*Log[3/2] + Log[3/2]^2),x]

[Out]

4/(x - Log[3/2])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 10, normalized size = 0.83 \begin {gather*} \frac {4}{x - \log \left (\frac {3}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4/(log(3/2)^2-2*x*log(3/2)+x^2),x, algorithm="fricas")

[Out]

4/(x - log(3/2))

________________________________________________________________________________________

giac [A]  time = 0.14, size = 10, normalized size = 0.83 \begin {gather*} \frac {4}{x - \log \left (\frac {3}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4/(log(3/2)^2-2*x*log(3/2)+x^2),x, algorithm="giac")

[Out]

4/(x - log(3/2))

________________________________________________________________________________________

maple [A]  time = 0.53, size = 11, normalized size = 0.92




method result size



gosper \(-\frac {4}{\ln \left (\frac {3}{2}\right )-x}\) \(11\)
default \(\frac {4}{x -\ln \left (\frac {3}{2}\right )}\) \(11\)
norman \(-\frac {4}{\ln \left (\frac {3}{2}\right )-x}\) \(11\)
risch \(\frac {4}{x +\ln \relax (2)-\ln \relax (3)}\) \(13\)
meijerg \(\frac {4 \left (\ln \relax (2)-\ln \relax (3)\right ) x}{\ln \left (\frac {3}{2}\right )^{2} \left (1-\frac {x}{\ln \relax (3)-\ln \relax (2)}\right ) \left (\ln \relax (3)-\ln \relax (2)\right )}\) \(40\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-4/(ln(3/2)^2-2*x*ln(3/2)+x^2),x,method=_RETURNVERBOSE)

[Out]

-4/(ln(3/2)-x)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 10, normalized size = 0.83 \begin {gather*} \frac {4}{x - \log \left (\frac {3}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4/(log(3/2)^2-2*x*log(3/2)+x^2),x, algorithm="maxima")

[Out]

4/(x - log(3/2))

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 8, normalized size = 0.67 \begin {gather*} \frac {4}{x+\ln \left (\frac {2}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-4/(log(3/2)^2 - 2*x*log(3/2) + x^2),x)

[Out]

4/(x + log(2/3))

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 8, normalized size = 0.67 \begin {gather*} \frac {4}{x - \log {\relax (3 )} + \log {\relax (2 )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4/(ln(3/2)**2-2*x*ln(3/2)+x**2),x)

[Out]

4/(x - log(3) + log(2))

________________________________________________________________________________________