Optimal. Leaf size=18 \[ \frac {10 e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 e^{\frac {1}{x}} x \log \left (\frac {1}{x^2}\right )+\left (-20 e^{\frac {1}{x}} x+e^{\frac {1}{x}} (-10-10 x) \log \left (\frac {1}{x^2}\right )\right ) \log (x)}{x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^{\frac {1}{x}} \left (-2 x \log (x)-\log \left (\frac {1}{x^2}\right ) (x+(1+x) \log (x))\right )}{x^3 \log ^2(x)} \, dx\\ &=10 \int \frac {e^{\frac {1}{x}} \left (-2 x \log (x)-\log \left (\frac {1}{x^2}\right ) (x+(1+x) \log (x))\right )}{x^3 \log ^2(x)} \, dx\\ &=10 \int \left (-\frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log ^2(x)}+\frac {e^{\frac {1}{x}} \left (-2 x-\log \left (\frac {1}{x^2}\right )-x \log \left (\frac {1}{x^2}\right )\right )}{x^3 \log (x)}\right ) \, dx\\ &=-\left (10 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log ^2(x)} \, dx\right )+10 \int \frac {e^{\frac {1}{x}} \left (-2 x-\log \left (\frac {1}{x^2}\right )-x \log \left (\frac {1}{x^2}\right )\right )}{x^3 \log (x)} \, dx\\ &=10 \int \left (-\frac {2 e^{\frac {1}{x}}}{x^2 \log (x)}-\frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^3 \log (x)}-\frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log (x)}\right ) \, dx-10 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log ^2(x)} \, dx\\ &=-\left (10 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log ^2(x)} \, dx\right )-10 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^3 \log (x)} \, dx-10 \int \frac {e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x^2 \log (x)} \, dx-20 \int \frac {e^{\frac {1}{x}}}{x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 18, normalized size = 1.00 \begin {gather*} \frac {10 e^{\frac {1}{x}} \log \left (\frac {1}{x^2}\right )}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 9, normalized size = 0.50 \begin {gather*} -\frac {20 \, e^{\frac {1}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 9, normalized size = 0.50 \begin {gather*} -\frac {20 \, e^{\frac {1}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.21, size = 41, normalized size = 2.28
method | result | size |
derivativedivides | \(\frac {\frac {\left (10 \ln \left (\frac {1}{x^{2}}\right )-20 \ln \left (\frac {1}{x}\right )\right ) {\mathrm e}^{\frac {1}{x}}}{x}+\frac {20 \,{\mathrm e}^{\frac {1}{x}} \ln \left (\frac {1}{x}\right )}{x}}{\ln \relax (x )}\) | \(41\) |
default | \(\frac {\frac {\left (10 \ln \left (\frac {1}{x^{2}}\right )-20 \ln \left (\frac {1}{x}\right )\right ) {\mathrm e}^{\frac {1}{x}}}{x}+\frac {20 \,{\mathrm e}^{\frac {1}{x}} \ln \left (\frac {1}{x}\right )}{x}}{\ln \relax (x )}\) | \(41\) |
risch | \(-\frac {20 \,{\mathrm e}^{\frac {1}{x}}}{x}+\frac {5 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{\frac {1}{x}} \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right )}{x \ln \relax (x )}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -10 \, \int \frac {x e^{\frac {1}{x}} \log \left (\frac {1}{x^{2}}\right ) + {\left ({\left (x + 1\right )} e^{\frac {1}{x}} \log \left (\frac {1}{x^{2}}\right ) + 2 \, x e^{\frac {1}{x}}\right )} \log \relax (x)}{x^{3} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.71, size = 17, normalized size = 0.94 \begin {gather*} \frac {10\,\ln \left (\frac {1}{x^2}\right )\,{\mathrm {e}}^{1/x}}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 8, normalized size = 0.44 \begin {gather*} - \frac {20 e^{\frac {1}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________