Optimal. Leaf size=23 \[ -1+x+\frac {1}{4} \left (5+x^2\right )-\frac {1}{2} x \log \left (5 e^x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 14, normalized size of antiderivative = 0.61, number of steps used = 4, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {12, 2157, 30} \begin {gather*} x-\frac {1}{4} \log ^2\left (5 e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2157
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (2-\log \left (5 e^x\right )\right ) \, dx\\ &=x-\frac {1}{2} \int \log \left (5 e^x\right ) \, dx\\ &=x-\frac {1}{2} \operatorname {Subst}\left (\int x \, dx,x,\log \left (5 e^x\right )\right )\\ &=x-\frac {1}{4} \log ^2\left (5 e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 14, normalized size = 0.61 \begin {gather*} x-\frac {1}{4} \log ^2\left (5 e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 12, normalized size = 0.52 \begin {gather*} -\frac {1}{4} \, x^{2} - \frac {1}{2} \, x \log \relax (5) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 12, normalized size = 0.52 \begin {gather*} -\frac {1}{4} \, x^{2} - \frac {1}{2} \, x \log \relax (5) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 0.52
method | result | size |
default | \(x -\frac {\ln \left (5 \,{\mathrm e}^{x}\right )^{2}}{4}\) | \(12\) |
derivativedivides | \(-\frac {\ln \left (5 \,{\mathrm e}^{x}\right )^{2}}{4}+\ln \left (5 \,{\mathrm e}^{x}\right )\) | \(16\) |
norman | \(-\frac {\ln \left (5 \,{\mathrm e}^{x}\right )^{2}}{4}+\ln \left (5 \,{\mathrm e}^{x}\right )\) | \(16\) |
risch | \(-\frac {x \ln \left ({\mathrm e}^{x}\right )}{2}-\frac {x \ln \relax (5)}{2}+\frac {x^{2}}{4}+x\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 11, normalized size = 0.48 \begin {gather*} -\frac {1}{4} \, \log \left (5 \, e^{x}\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.44, size = 8, normalized size = 0.35 \begin {gather*} -\frac {x\,\left (x+\ln \left (25\right )-4\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 12, normalized size = 0.52 \begin {gather*} - \frac {x^{2}}{4} + x \left (1 - \frac {\log {\relax (5 )}}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________