Optimal. Leaf size=29 \[ e^{6-2 x}+\frac {x}{-x+x \left (623-x-\log ^2(x)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.26, antiderivative size = 21, normalized size of antiderivative = 0.72, number of steps used = 5, number of rules used = 4, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6688, 6742, 2194, 6686} \begin {gather*} e^{6-2 x}+\frac {1}{-x-\log ^2(x)+622} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 x} \left (\left (e^{2 x}-2 e^6 (-622+x)^2\right ) x+2 e^{2 x} \log (x)-4 e^6 (-622+x) x \log ^2(x)-2 e^6 x \log ^4(x)\right )}{x \left (622-x-\log ^2(x)\right )^2} \, dx\\ &=\int \left (-2 e^{6-2 x}+\frac {x+2 \log (x)}{x \left (-622+x+\log ^2(x)\right )^2}\right ) \, dx\\ &=-\left (2 \int e^{6-2 x} \, dx\right )+\int \frac {x+2 \log (x)}{x \left (-622+x+\log ^2(x)\right )^2} \, dx\\ &=e^{6-2 x}+\frac {1}{622-x-\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 19, normalized size = 0.66 \begin {gather*} e^{6-2 x}-\frac {1}{-622+x+\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 33, normalized size = 1.14 \begin {gather*} \frac {e^{\left (-2 \, x + 6\right )} \log \relax (x)^{2} + {\left (x - 622\right )} e^{\left (-2 \, x + 6\right )} - 1}{\log \relax (x)^{2} + x - 622} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 39, normalized size = 1.34 \begin {gather*} \frac {e^{\left (-2 \, x + 6\right )} \log \relax (x)^{2} + x e^{\left (-2 \, x + 6\right )} - 622 \, e^{\left (-2 \, x + 6\right )} - 1}{\log \relax (x)^{2} + x - 622} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.66
method | result | size |
risch | \({\mathrm e}^{6-2 x}-\frac {1}{\ln \relax (x )^{2}+x -622}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 36, normalized size = 1.24 \begin {gather*} \frac {{\left (e^{6} \log \relax (x)^{2} + x e^{6} - 622 \, e^{6} - e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{\log \relax (x)^{2} + x - 622} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 19, normalized size = 0.66 \begin {gather*} {\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^6-\frac {1}{{\ln \relax (x)}^2+x-622} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.52 \begin {gather*} e^{6 - 2 x} - \frac {1}{x + \log {\relax (x )}^{2} - 622} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________