3.88.44 \(\int (3+2 \log (x)) \, dx\)

Optimal. Leaf size=13 \[ 5+e^3+x+\log (4)+2 x \log (x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 7, normalized size of antiderivative = 0.54, number of steps used = 2, number of rules used = 1, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2295} \begin {gather*} x+2 x \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[3 + 2*Log[x],x]

[Out]

x + 2*x*Log[x]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=3 x+2 \int \log (x) \, dx\\ &=x+2 x \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 7, normalized size = 0.54 \begin {gather*} x+2 x \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[3 + 2*Log[x],x]

[Out]

x + 2*x*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 7, normalized size = 0.54 \begin {gather*} 2 \, x \log \relax (x) + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*log(x)+3,x, algorithm="fricas")

[Out]

2*x*log(x) + x

________________________________________________________________________________________

giac [A]  time = 0.24, size = 7, normalized size = 0.54 \begin {gather*} 2 \, x \log \relax (x) + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*log(x)+3,x, algorithm="giac")

[Out]

2*x*log(x) + x

________________________________________________________________________________________

maple [A]  time = 0.01, size = 8, normalized size = 0.62




method result size



default \(x +2 x \ln \relax (x )\) \(8\)
norman \(x +2 x \ln \relax (x )\) \(8\)
risch \(x +2 x \ln \relax (x )\) \(8\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*ln(x)+3,x,method=_RETURNVERBOSE)

[Out]

x+2*x*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 7, normalized size = 0.54 \begin {gather*} 2 \, x \log \relax (x) + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*log(x)+3,x, algorithm="maxima")

[Out]

2*x*log(x) + x

________________________________________________________________________________________

mupad [B]  time = 5.33, size = 8, normalized size = 0.62 \begin {gather*} x\,\left (2\,\ln \relax (x)+1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*log(x) + 3,x)

[Out]

x*(2*log(x) + 1)

________________________________________________________________________________________

sympy [A]  time = 0.07, size = 7, normalized size = 0.54 \begin {gather*} 2 x \log {\relax (x )} + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*ln(x)+3,x)

[Out]

2*x*log(x) + x

________________________________________________________________________________________