Optimal. Leaf size=30 \[ \frac {x^2}{\left (-\frac {5}{e}+\frac {x^3 (4+x)}{5 \log (4)}\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 \left (-20 x^4-5 x^5\right ) \log (4)+125 e x \log ^2(4)+\left (e^2 \left (-20 x^4-10 x^5\right ) \log (4)-250 e x \log ^2(4)\right ) \log (x)}{\left (e^2 \left (16 x^6+8 x^7+x^8\right )+e \left (-200 x^3-50 x^4\right ) \log (4)+625 \log ^2(4)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e x \log (4) \left (-e x^3 (4+x)+25 \log (4)-2 \left (e x^3 (2+x)+25 \log (4)\right ) \log (x)\right )}{\left (4 e x^3+e x^4-25 \log (4)\right )^2 \log ^2(x)} \, dx\\ &=(5 e \log (4)) \int \frac {x \left (-e x^3 (4+x)+25 \log (4)-2 \left (e x^3 (2+x)+25 \log (4)\right ) \log (x)\right )}{\left (4 e x^3+e x^4-25 \log (4)\right )^2 \log ^2(x)} \, dx\\ &=(5 e \log (4)) \int \left (-\frac {x}{\left (4 e x^3+e x^4-25 \log (4)\right ) \log ^2(x)}-\frac {2 x \left (2 e x^3+e x^4+25 \log (4)\right )}{\left (4 e x^3+e x^4-25 \log (4)\right )^2 \log (x)}\right ) \, dx\\ &=-\left ((5 e \log (4)) \int \frac {x}{\left (4 e x^3+e x^4-25 \log (4)\right ) \log ^2(x)} \, dx\right )-(10 e \log (4)) \int \frac {x \left (2 e x^3+e x^4+25 \log (4)\right )}{\left (4 e x^3+e x^4-25 \log (4)\right )^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 27, normalized size = 0.90 \begin {gather*} \frac {5 e x^2 \log (4)}{\left (e x^3 (4+x)-25 \log (4)\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 32, normalized size = 1.07 \begin {gather*} \frac {10 \, x^{2} e \log \relax (2)}{{\left ({\left (x^{4} + 4 \, x^{3}\right )} e - 50 \, \log \relax (2)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 35, normalized size = 1.17
method | result | size |
risch | \(-\frac {10 x^{2} \ln \relax (2) {\mathrm e}}{\left (-x^{4} {\mathrm e}-4 x^{3} {\mathrm e}+50 \ln \relax (2)\right ) \ln \relax (x )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 33, normalized size = 1.10 \begin {gather*} \frac {10 \, x^{2} e \log \relax (2)}{{\left (x^{4} e + 4 \, x^{3} e - 50 \, \log \relax (2)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.46, size = 33, normalized size = 1.10 \begin {gather*} \frac {10\,x^2\,\mathrm {e}\,\ln \relax (2)}{\ln \relax (x)\,\left (\mathrm {e}\,x^4+4\,\mathrm {e}\,x^3-50\,\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 34, normalized size = 1.13 \begin {gather*} \frac {10 e x^{2} \log {\relax (2 )}}{\left (e x^{4} + 4 e x^{3} - 50 \log {\relax (2 )}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________