Optimal. Leaf size=35 \[ \frac {1}{5} e^{x-\left (3-e^2\right ) \left (4+(-1+x) \left (8+\frac {3}{x}+x\right )\right )}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 45, normalized size of antiderivative = 1.29, number of steps used = 4, number of rules used = 3, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 14, 6706} \begin {gather*} \frac {1}{5} \exp \left (-3 x^2-e^2 \left (-x^2-7 x+\frac {3}{x}+1\right )-20 x+\frac {9}{x}+3\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-5 x^2+\exp \left (\frac {9+3 x-20 x^2-3 x^3+e^2 \left (-3-x+7 x^2+x^3\right )}{x}\right ) \left (-9-20 x^2-6 x^3+e^2 \left (3+7 x^2+2 x^3\right )\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-5+\frac {\exp \left (3+\frac {9}{x}-20 x-3 x^2+e^2 \left (-1-\frac {3}{x}+7 x+x^2\right )\right ) \left (-3 \left (3-e^2\right )-\left (20-7 e^2\right ) x^2-2 \left (3-e^2\right ) x^3\right )}{x^2}\right ) \, dx\\ &=-x+\frac {1}{5} \int \frac {\exp \left (3+\frac {9}{x}-20 x-3 x^2+e^2 \left (-1-\frac {3}{x}+7 x+x^2\right )\right ) \left (-3 \left (3-e^2\right )-\left (20-7 e^2\right ) x^2-2 \left (3-e^2\right ) x^3\right )}{x^2} \, dx\\ &=\frac {1}{5} e^{3+\frac {9}{x}-20 x-3 x^2-e^2 \left (1+\frac {3}{x}-7 x-x^2\right )}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 45, normalized size = 1.29 \begin {gather*} \frac {1}{5} e^{3-e^2-\frac {3 \left (-3+e^2\right )}{x}+\left (-20+7 e^2\right ) x+\left (-3+e^2\right ) x^2}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 44, normalized size = 1.26 \begin {gather*} -x + \frac {1}{5} \, e^{\left (-\frac {3 \, x^{3} + 20 \, x^{2} - {\left (x^{3} + 7 \, x^{2} - x - 3\right )} e^{2} - 3 \, x - 9}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 48, normalized size = 1.37 \begin {gather*} -x + \frac {1}{5} \, e^{\left (\frac {x^{3} e^{2} - 3 \, x^{3} + 7 \, x^{2} e^{2} - 20 \, x^{2} - x e^{2} + 3 \, x - 3 \, e^{2} + 9}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 49, normalized size = 1.40
method | result | size |
risch | \(-x +\frac {{\mathrm e}^{\frac {x^{3} {\mathrm e}^{2}+7 x^{2} {\mathrm e}^{2}-3 x^{3}-{\mathrm e}^{2} x -20 x^{2}-3 \,{\mathrm e}^{2}+3 x +9}{x}}}{5}\) | \(49\) |
norman | \(\frac {-x^{2}+\frac {x \,{\mathrm e}^{\frac {\left (x^{3}+7 x^{2}-x -3\right ) {\mathrm e}^{2}-3 x^{3}-20 x^{2}+3 x +9}{x}}}{5}}{x}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 44, normalized size = 1.26 \begin {gather*} -x + \frac {1}{5} \, e^{\left (x^{2} e^{2} - 3 \, x^{2} + 7 \, x e^{2} - 20 \, x - \frac {3 \, e^{2}}{x} + \frac {9}{x} - e^{2} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 50, normalized size = 1.43 \begin {gather*} \frac {{\mathrm {e}}^{x^2\,{\mathrm {e}}^2}\,{\mathrm {e}}^{-\frac {3\,{\mathrm {e}}^2}{x}}\,{\mathrm {e}}^{-{\mathrm {e}}^2}\,{\mathrm {e}}^{-20\,x}\,{\mathrm {e}}^3\,{\mathrm {e}}^{-3\,x^2}\,{\mathrm {e}}^{9/x}\,{\mathrm {e}}^{7\,x\,{\mathrm {e}}^2}}{5}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 36, normalized size = 1.03 \begin {gather*} - x + \frac {e^{\frac {- 3 x^{3} - 20 x^{2} + 3 x + \left (x^{3} + 7 x^{2} - x - 3\right ) e^{2} + 9}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________