Optimal. Leaf size=25 \[ 2 x+e^4 (-2+3 x)^2 \log ^2\left (\frac {1}{2 x}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 102, normalized size of antiderivative = 4.08, number of steps used = 11, number of rules used = 9, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.170, Rules used = {14, 43, 2334, 2301, 2330, 2296, 2295, 2305, 2304} \begin {gather*} 9 e^4 x^2 \log ^2\left (\frac {1}{2 x}\right )+9 e^4 x^2 \log \left (\frac {1}{2 x}\right )+e^4 \log \left (\frac {1}{2 x}\right ) \left (-9 x^2+24 x-8 \log (x)\right )+2 x-12 e^4 x \log ^2\left (\frac {1}{2 x}\right )-4 e^4 \log ^2(x)-24 e^4 x \log \left (\frac {1}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2295
Rule 2296
Rule 2301
Rule 2304
Rule 2305
Rule 2330
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2-\frac {2 e^4 (-2+3 x)^2 \log \left (\frac {1}{2 x}\right )}{x}+6 e^4 (-2+3 x) \log ^2\left (\frac {1}{2 x}\right )\right ) \, dx\\ &=2 x-\left (2 e^4\right ) \int \frac {(-2+3 x)^2 \log \left (\frac {1}{2 x}\right )}{x} \, dx+\left (6 e^4\right ) \int (-2+3 x) \log ^2\left (\frac {1}{2 x}\right ) \, dx\\ &=2 x+e^4 \log \left (\frac {1}{2 x}\right ) \left (24 x-9 x^2-8 \log (x)\right )-\left (2 e^4\right ) \int \left (-12+\frac {9 x}{2}+\frac {4 \log (x)}{x}\right ) \, dx+\left (6 e^4\right ) \int \left (-2 \log ^2\left (\frac {1}{2 x}\right )+3 x \log ^2\left (\frac {1}{2 x}\right )\right ) \, dx\\ &=2 x+24 e^4 x-\frac {9 e^4 x^2}{2}+e^4 \log \left (\frac {1}{2 x}\right ) \left (24 x-9 x^2-8 \log (x)\right )-\left (8 e^4\right ) \int \frac {\log (x)}{x} \, dx-\left (12 e^4\right ) \int \log ^2\left (\frac {1}{2 x}\right ) \, dx+\left (18 e^4\right ) \int x \log ^2\left (\frac {1}{2 x}\right ) \, dx\\ &=2 x+24 e^4 x-\frac {9 e^4 x^2}{2}-12 e^4 x \log ^2\left (\frac {1}{2 x}\right )+9 e^4 x^2 \log ^2\left (\frac {1}{2 x}\right )+e^4 \log \left (\frac {1}{2 x}\right ) \left (24 x-9 x^2-8 \log (x)\right )-4 e^4 \log ^2(x)+\left (18 e^4\right ) \int x \log \left (\frac {1}{2 x}\right ) \, dx-\left (24 e^4\right ) \int \log \left (\frac {1}{2 x}\right ) \, dx\\ &=2 x-24 e^4 x \log \left (\frac {1}{2 x}\right )+9 e^4 x^2 \log \left (\frac {1}{2 x}\right )-12 e^4 x \log ^2\left (\frac {1}{2 x}\right )+9 e^4 x^2 \log ^2\left (\frac {1}{2 x}\right )+e^4 \log \left (\frac {1}{2 x}\right ) \left (24 x-9 x^2-8 \log (x)\right )-4 e^4 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 53, normalized size = 2.12 \begin {gather*} 2 x+4 e^4 \log ^2\left (\frac {1}{2 x}\right )-12 e^4 x \log ^2\left (\frac {1}{2 x}\right )+9 e^4 x^2 \log ^2\left (\frac {1}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 25, normalized size = 1.00 \begin {gather*} {\left (9 \, x^{2} - 12 \, x + 4\right )} e^{4} \log \left (\frac {1}{2 \, x}\right )^{2} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 46, normalized size = 1.84 \begin {gather*} {\left (9 \, e^{4} \log \left (2 \, x\right )^{2} - \frac {12 \, e^{4} \log \left (2 \, x\right )^{2}}{x} + \frac {4 \, e^{4} \log \left (2 \, x\right )^{2}}{x^{2}} + \frac {2}{x}\right )} x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 45, normalized size = 1.80
method | result | size |
risch | \(2 x +4 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2}-12 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2} x +9 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2} x^{2}\) | \(45\) |
norman | \(2 x +4 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2}-12 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2} x +9 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2} x^{2}\) | \(51\) |
derivativedivides | \(6 \,{\mathrm e}^{4} \left (-2 x \ln \left (\frac {1}{2 x}\right )^{2}-4 \ln \left (\frac {1}{2 x}\right ) x -4 x \right )+4 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2}-\frac {9 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right )^{2} x^{2}-2 \ln \left (\frac {1}{2 x}\right ) x^{2}-x^{2}\right )}{2}-12 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right ) x -2 x \right )+\frac {9 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right ) x^{2}-x^{2}\right )}{2}+2 x\) | \(127\) |
default | \(6 \,{\mathrm e}^{4} \left (-2 x \ln \left (\frac {1}{2 x}\right )^{2}-4 \ln \left (\frac {1}{2 x}\right ) x -4 x \right )+4 \,{\mathrm e}^{4} \ln \left (\frac {1}{2 x}\right )^{2}-\frac {9 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right )^{2} x^{2}-2 \ln \left (\frac {1}{2 x}\right ) x^{2}-x^{2}\right )}{2}-12 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right ) x -2 x \right )+\frac {9 \,{\mathrm e}^{4} \left (-2 \ln \left (\frac {1}{2 x}\right ) x^{2}-x^{2}\right )}{2}+2 x\) | \(127\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 44, normalized size = 1.76 \begin {gather*} 9 \, x^{2} e^{4} \log \left (\frac {1}{2 \, x}\right )^{2} - 12 \, x e^{4} \log \left (\frac {1}{2 \, x}\right )^{2} + 4 \, e^{4} \log \left (\frac {1}{2 \, x}\right )^{2} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.66, size = 45, normalized size = 1.80 \begin {gather*} 4\,{\mathrm {e}}^4\,{\ln \left (\frac {1}{2\,x}\right )}^2-x\,\left (12\,{\mathrm {e}}^4\,{\ln \left (\frac {1}{2\,x}\right )}^2-2\right )+9\,x^2\,{\mathrm {e}}^4\,{\ln \left (\frac {1}{2\,x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 31, normalized size = 1.24 \begin {gather*} 2 x + \left (9 x^{2} e^{4} - 12 x e^{4} + 4 e^{4}\right ) \log {\left (\frac {1}{2 x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________