Optimal. Leaf size=27 \[ \frac {4}{1+\log \left (\log \left (\frac {x^2 \left (-x+x^2\right )}{9 \log (\log (4))}\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 3, integrand size = 134, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6688, 12, 6686} \begin {gather*} \frac {4}{\log \left (\log \left (-\frac {(1-x) x^3}{9 \log (\log (4))}\right )\right )+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (-3+4 x)}{(1-x) x \log \left (\frac {(-1+x) x^3}{9 \log (\log (4))}\right ) \left (1+\log \left (\log \left (\frac {(-1+x) x^3}{9 \log (\log (4))}\right )\right )\right )^2} \, dx\\ &=4 \int \frac {-3+4 x}{(1-x) x \log \left (\frac {(-1+x) x^3}{9 \log (\log (4))}\right ) \left (1+\log \left (\log \left (\frac {(-1+x) x^3}{9 \log (\log (4))}\right )\right )\right )^2} \, dx\\ &=\frac {4}{1+\log \left (\log \left (-\frac {(1-x) x^3}{9 \log (\log (4))}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 0.85 \begin {gather*} \frac {4}{1+\log \left (\log \left (\frac {(-1+x) x^3}{9 \log (\log (4))}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 26, normalized size = 0.96 \begin {gather*} \frac {4}{\log \left (\log \left (\frac {x^{4} - x^{3}}{9 \, \log \left (2 \, \log \relax (2)\right )}\right )\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.87, size = 31, normalized size = 1.15 \begin {gather*} \frac {4}{\log \left (\log \left (x^{4} - x^{3}\right ) - \log \left (9 \, \log \relax (2) + 9 \, \log \left (\log \relax (2)\right )\right )\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {-16 x +12}{\left (x^{2}-x \right ) \ln \left (\frac {x^{4}-x^{3}}{9 \ln \left (2 \ln \relax (2)\right )}\right ) \ln \left (\ln \left (\frac {x^{4}-x^{3}}{9 \ln \left (2 \ln \relax (2)\right )}\right )\right )^{2}+\left (2 x^{2}-2 x \right ) \ln \left (\frac {x^{4}-x^{3}}{9 \ln \left (2 \ln \relax (2)\right )}\right ) \ln \left (\ln \left (\frac {x^{4}-x^{3}}{9 \ln \left (2 \ln \relax (2)\right )}\right )\right )+\left (x^{2}-x \right ) \ln \left (\frac {x^{4}-x^{3}}{9 \ln \left (2 \ln \relax (2)\right )}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 29, normalized size = 1.07 \begin {gather*} \frac {4}{\log \left (-2 \, \log \relax (3) + \log \left (x - 1\right ) + 3 \, \log \relax (x) - \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.78, size = 31, normalized size = 1.15 \begin {gather*} \frac {4}{\ln \left (\ln \left (x^4-x^3\right )-\ln \left (9\,\ln \relax (2)+9\,\ln \left (\ln \relax (2)\right )\right )\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 22, normalized size = 0.81 \begin {gather*} \frac {4}{\log {\left (\log {\left (\frac {\frac {x^{4}}{9} - \frac {x^{3}}{9}}{\log {\left (2 \log {\relax (2 )} \right )}} \right )} \right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________