Optimal. Leaf size=25 \[ x-\frac {2}{-7+2 x-\frac {\frac {3}{e^2}+2 x}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {1680, 1814, 21, 8} \begin {gather*} \frac {2 e^2 x}{-2 e^2 x^2+9 e^2 x+3}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {3 \left (192+1424 e^2+2619 e^4\right )+1152 e^4 x-32 e^2 \left (24+73 e^2\right ) x^2+256 e^4 x^4}{\left (3 \left (8+27 e^2\right )-16 e^2 x^2\right )^2} \, dx,x,-\frac {9}{4}+x\right )\\ &=\frac {2 e^2 x}{3+9 e^2 x-2 e^2 x^2}-\frac {\operatorname {Subst}\left (\int \frac {-18 \left (8+27 e^2\right )^2+96 e^2 \left (8+27 e^2\right ) x^2}{3 \left (8+27 e^2\right )-16 e^2 x^2} \, dx,x,-\frac {9}{4}+x\right )}{6 \left (8+27 e^2\right )}\\ &=\frac {2 e^2 x}{3+9 e^2 x-2 e^2 x^2}+\operatorname {Subst}\left (\int 1 \, dx,x,-\frac {9}{4}+x\right )\\ &=x+\frac {2 e^2 x}{3+9 e^2 x-2 e^2 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.88 \begin {gather*} x-\frac {2 e^2 x}{-3+e^2 x (-9+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 41, normalized size = 1.64 \begin {gather*} \frac {2 \, x^{3} - 9 \, x^{2} - x e^{\left (\log \relax (3) - 2\right )} - 2 \, x}{2 \, x^{2} - 9 \, x - e^{\left (\log \relax (3) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 306, normalized size = 12.24 \begin {gather*} x - \frac {2 \, {\left ({\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 9\right )}^{2} + 8 \, e^{\left (\log \relax (3) - 2\right )}\right )} \log \left (\frac {1}{4} \, \sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + x - \frac {9}{4}\right )}{{\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 9\right )}^{3} + 27 \, {\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 9\right )}^{2} + 162 \, \sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 8 \, {\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 9\right )} e^{\left (\log \relax (3) - 2\right )} - 72 \, e^{\left (\log \relax (3) - 2\right )} - 1458} + \frac {2 \, {\left ({\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + 9\right )}^{2} + 8 \, e^{\left (\log \relax (3) - 2\right )}\right )} \log \left (-\frac {1}{4} \, \sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + x - \frac {9}{4}\right )}{{\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + 9\right )}^{3} - 27 \, {\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + 9\right )}^{2} + 162 \, \sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} - 8 \, {\left (\sqrt {3} \sqrt {27 \, e^{6} + 8 \, e^{4}} e^{\left (-3\right )} + 9\right )} e^{\left (\log \relax (3) - 2\right )} + 72 \, e^{\left (\log \relax (3) - 2\right )} + 1458} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 19, normalized size = 0.76
method | result | size |
risch | \(x +\frac {2 x}{3 \left (-\frac {2 x^{2}}{3}+{\mathrm e}^{-2}+3 x \right )}\) | \(19\) |
gosper | \(\frac {-4 x^{3}+2 \,{\mathrm e}^{\ln \relax (3)-2} x +9 \,{\mathrm e}^{\ln \relax (3)-2}+85 x}{-4 x^{2}+2 \,{\mathrm e}^{\ln \relax (3)-2}+18 x}\) | \(43\) |
norman | \(\frac {\left (-\frac {{\mathrm e}^{2} \left (85 \,{\mathrm e}^{2}+6\right ) x}{2}+2 x^{3} {\mathrm e}^{4}-\frac {27 \,{\mathrm e}^{2}}{2}\right ) {\mathrm e}^{-2}}{2 x^{2} {\mathrm e}^{2}-9 \,{\mathrm e}^{2} x -3}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.92 \begin {gather*} x - \frac {2 \, x e^{2}}{2 \, x^{2} e^{2} - 9 \, x e^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.45, size = 23, normalized size = 0.92 \begin {gather*} x+\frac {2\,x\,{\mathrm {e}}^2}{-2\,{\mathrm {e}}^2\,x^2+9\,{\mathrm {e}}^2\,x+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 24, normalized size = 0.96 \begin {gather*} x - \frac {2 x e^{2}}{2 x^{2} e^{2} - 9 x e^{2} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________