Optimal. Leaf size=27 \[ e-\frac {1-e^{\left (-x+(-2+x+\log (2))^2\right )^2}}{x}+x \]
________________________________________________________________________________________
Rubi [F] time = 21.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+x^2+\exp \left (16-40 x+33 x^2-10 x^3+x^4+\left (-32+56 x-28 x^2+4 x^3\right ) \log (2)+\left (24-26 x+6 x^2\right ) \log ^2(2)+(-8+4 x) \log ^3(2)+\log ^4(2)\right ) \left (-1-40 x+66 x^2-30 x^3+4 x^4+\left (56 x-56 x^2+12 x^3\right ) \log (2)+\left (-26 x+12 x^2\right ) \log ^2(2)+4 x \log ^3(2)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+x^2}{x^2}+\frac {16^{-8+14 x-7 x^2+x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) \left (-1+4 x^4+2 x^2 \left (33-28 \log (2)+6 \log ^2(2)\right )-6 x^3 (5-\log (4))-2 x (2-\log (2))^2 (5-\log (4))\right )}{x^2}\right ) \, dx\\ &=\int \frac {1+x^2}{x^2} \, dx+\int \frac {16^{-8+14 x-7 x^2+x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) \left (-1+4 x^4+2 x^2 \left (33-28 \log (2)+6 \log ^2(2)\right )-6 x^3 (5-\log (4))-2 x (2-\log (2))^2 (5-\log (4))\right )}{x^2} \, dx\\ &=\int \left (1+\frac {1}{x^2}\right ) \, dx+\int \left (-\frac {16^{-8+14 x-7 x^2+x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right )}{x^2}+4^{-15+28 x-14 x^2+2 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) x^2+2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) \left (33-28 \log (2)+6 \log ^2(2)\right )+3\ 2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) x (-5+\log (4))+\frac {2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) (-2+\log (2))^2 (-5+\log (4))}{x}\right ) \, dx\\ &=-\frac {1}{x}+x+\left (33-28 \log (2)+6 \log ^2(2)\right ) \int 2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) \, dx-\left ((2-\log (2))^2 (5-\log (4))\right ) \int \frac {2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right )}{x} \, dx+(3 (-5+\log (4))) \int 2^{-31+56 x-28 x^2+4 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) x \, dx-\int \frac {16^{-8+14 x-7 x^2+x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right )}{x^2} \, dx+\int 4^{-15+28 x-14 x^2+2 x^3} \exp \left (16-10 x^3+x^4+24 \log ^2(2)-8 \log ^3(2)+\log ^4(2)+3 x^2 \left (11+2 \log ^2(2)\right )-2 x \left (20+13 \log ^2(2)-2 \log ^3(2)\right )\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.63, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1+x^2+e^{16-40 x+33 x^2-10 x^3+x^4+\left (-32+56 x-28 x^2+4 x^3\right ) \log (2)+\left (24-26 x+6 x^2\right ) \log ^2(2)+(-8+4 x) \log ^3(2)+\log ^4(2)} \left (-1-40 x+66 x^2-30 x^3+4 x^4+\left (56 x-56 x^2+12 x^3\right ) \log (2)+\left (-26 x+12 x^2\right ) \log ^2(2)+4 x \log ^3(2)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 74, normalized size = 2.74 \begin {gather*} \frac {x^{2} + e^{\left (x^{4} + 4 \, {\left (x - 2\right )} \log \relax (2)^{3} + \log \relax (2)^{4} - 10 \, x^{3} + 2 \, {\left (3 \, x^{2} - 13 \, x + 12\right )} \log \relax (2)^{2} + 33 \, x^{2} + 4 \, {\left (x^{3} - 7 \, x^{2} + 14 \, x - 8\right )} \log \relax (2) - 40 \, x + 16\right )} - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.68, size = 89, normalized size = 3.30 \begin {gather*} \frac {4294967296 \, x^{2} + e^{\left (x^{4} + 4 \, x^{3} \log \relax (2) + 6 \, x^{2} \log \relax (2)^{2} + 4 \, x \log \relax (2)^{3} + \log \relax (2)^{4} - 10 \, x^{3} - 28 \, x^{2} \log \relax (2) - 26 \, x \log \relax (2)^{2} - 8 \, \log \relax (2)^{3} + 33 \, x^{2} + 56 \, x \log \relax (2) + 24 \, \log \relax (2)^{2} - 40 \, x + 16\right )} - 4294967296}{4294967296 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 10.02, size = 76, normalized size = 2.81
method | result | size |
norman | \(\frac {-1+x^{2}+{\mathrm e}^{\ln \relax (2)^{4}+\left (4 x -8\right ) \ln \relax (2)^{3}+\left (6 x^{2}-26 x +24\right ) \ln \relax (2)^{2}+\left (4 x^{3}-28 x^{2}+56 x -32\right ) \ln \relax (2)+x^{4}-10 x^{3}+33 x^{2}-40 x +16}}{x}\) | \(76\) |
risch | \(x -\frac {1}{x}+\frac {16^{\left (x -1\right ) \left (x -2\right ) \left (x -4\right )} {\mathrm e}^{\ln \relax (2)^{4}+4 x \ln \relax (2)^{3}+6 x^{2} \ln \relax (2)^{2}+x^{4}-8 \ln \relax (2)^{3}-26 x \ln \relax (2)^{2}-10 x^{3}+24 \ln \relax (2)^{2}+33 x^{2}-40 x +16}}{x}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 89, normalized size = 3.30 \begin {gather*} x + \frac {e^{\left (x^{4} + 4 \, x^{3} \log \relax (2) + 6 \, x^{2} \log \relax (2)^{2} + 4 \, x \log \relax (2)^{3} + \log \relax (2)^{4} - 10 \, x^{3} - 28 \, x^{2} \log \relax (2) - 26 \, x \log \relax (2)^{2} - 8 \, \log \relax (2)^{3} + 33 \, x^{2} + 56 \, x \log \relax (2) + 24 \, \log \relax (2)^{2} - 40 \, x + 16\right )}}{4294967296 \, x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 100, normalized size = 3.70 \begin {gather*} x-\frac {1}{x}+\frac {2^{56\,x}\,2^{4\,x^3}\,{\mathrm {e}}^{4\,x\,{\ln \relax (2)}^3}\,{\mathrm {e}}^{-26\,x\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{{\ln \relax (2)}^4}\,{\mathrm {e}}^{-40\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{6\,x^2\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{-8\,{\ln \relax (2)}^3}\,{\mathrm {e}}^{24\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{-10\,x^3}\,{\mathrm {e}}^{33\,x^2}}{4294967296\,2^{28\,x^2}\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 75, normalized size = 2.78 \begin {gather*} x + \frac {e^{x^{4} - 10 x^{3} + 33 x^{2} - 40 x + \left (4 x - 8\right ) \log {\relax (2 )}^{3} + \left (6 x^{2} - 26 x + 24\right ) \log {\relax (2 )}^{2} + \left (4 x^{3} - 28 x^{2} + 56 x - 32\right ) \log {\relax (2 )} + \log {\relax (2 )}^{4} + 16}}{x} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________