Optimal. Leaf size=35 \[ 3+e^2-x+\log \left (\frac {5}{4-\left (-\frac {e^x}{4}+(4-x)^2\right )^2+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {80-3 e^{2 x}+1040 x-768 x^2+192 x^3-16 x^4+e^x \left (192-112 x+16 x^2\right )}{4032+e^{2 x}-4112 x+1536 x^2-256 x^3+16 x^4+e^x \left (-128+64 x-8 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3-\frac {8 \left (-1522+24 e^x+1412 x-10 e^x x-480 x^2+e^x x^2+72 x^3-4 x^4\right )}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}\right ) \, dx\\ &=-3 x-8 \int \frac {-1522+24 e^x+1412 x-10 e^x x-480 x^2+e^x x^2+72 x^3-4 x^4}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx\\ &=-3 x-8 \int \left (-\frac {1522}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}+\frac {24 e^x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}+\frac {1412 x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}-\frac {10 e^x x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}-\frac {480 x^2}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}+\frac {e^x x^2}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}+\frac {72 x^3}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}-\frac {4 x^4}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4}\right ) \, dx\\ &=-3 x-8 \int \frac {e^x x^2}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx+32 \int \frac {x^4}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx+80 \int \frac {e^x x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx-192 \int \frac {e^x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx-576 \int \frac {x^3}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx+3840 \int \frac {x^2}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx-11296 \int \frac {x}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx+12176 \int \frac {1}{4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 51, normalized size = 1.46 \begin {gather*} -x-\log \left (4032-128 e^x+e^{2 x}-4112 x+64 e^x x+1536 x^2-8 e^x x^2-256 x^3+16 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 43, normalized size = 1.23 \begin {gather*} -x - \log \left (16 \, x^{4} - 256 \, x^{3} + 1536 \, x^{2} - 8 \, {\left (x^{2} - 8 \, x + 16\right )} e^{x} - 4112 \, x + e^{\left (2 \, x\right )} + 4032\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 47, normalized size = 1.34 \begin {gather*} -x - \log \left (16 \, x^{4} - 256 \, x^{3} - 8 \, x^{2} e^{x} + 1536 \, x^{2} + 64 \, x e^{x} - 4112 \, x + e^{\left (2 \, x\right )} - 128 \, e^{x} + 4032\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 45, normalized size = 1.29
method | result | size |
risch | \(-x -\ln \left ({\mathrm e}^{2 x}+\left (-8 x^{2}+64 x -128\right ) {\mathrm e}^{x}+16 x^{4}-256 x^{3}+1536 x^{2}-4112 x +4032\right )\) | \(45\) |
norman | \(-x -\ln \left (16 x^{4}-8 \,{\mathrm e}^{x} x^{2}-256 x^{3}+{\mathrm e}^{2 x}+64 \,{\mathrm e}^{x} x +1536 x^{2}-128 \,{\mathrm e}^{x}-4112 x +4032\right )\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 43, normalized size = 1.23 \begin {gather*} -x - \log \left (16 \, x^{4} - 256 \, x^{3} + 1536 \, x^{2} - 8 \, {\left (x^{2} - 8 \, x + 16\right )} e^{x} - 4112 \, x + e^{\left (2 \, x\right )} + 4032\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 47, normalized size = 1.34 \begin {gather*} -x-\ln \left (\frac {{\mathrm {e}}^{2\,x}}{16}-257\,x-8\,{\mathrm {e}}^x-\frac {x^2\,{\mathrm {e}}^x}{2}+4\,x\,{\mathrm {e}}^x+96\,x^2-16\,x^3+x^4+252\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 42, normalized size = 1.20 \begin {gather*} - x - \log {\left (16 x^{4} - 256 x^{3} + 1536 x^{2} - 4112 x + \left (- 8 x^{2} + 64 x - 128\right ) e^{x} + e^{2 x} + 4032 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________