Optimal. Leaf size=26 \[ \frac {x}{e^4 (4-x) (x+\log (4)) \left (-4+\log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x-2 x^2+(-24+2 x) \log (4)+\left (x^2+4 \log (4)\right ) \log \left (x^2\right )}{e^4 \left (256 x^2-128 x^3+16 x^4\right )+e^4 \left (512 x-256 x^2+32 x^3\right ) \log (4)+e^4 \left (256-128 x+16 x^2\right ) \log ^2(4)+\left (e^4 \left (-128 x^2+64 x^3-8 x^4\right )+e^4 \left (-256 x+128 x^2-16 x^3\right ) \log (4)+e^4 \left (-128+64 x-8 x^2\right ) \log ^2(4)\right ) \log \left (x^2\right )+\left (e^4 \left (16 x^2-8 x^3+x^4\right )+e^4 \left (32 x-16 x^2+2 x^3\right ) \log (4)+e^4 \left (16-8 x+x^2\right ) \log ^2(4)\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^2+2 x (-4+\log (4))-24 \log (4)+\left (x^2+\log (256)\right ) \log \left (x^2\right )}{e^4 (4-x)^2 (x+\log (4))^2 \left (4-\log \left (x^2\right )\right )^2} \, dx\\ &=\frac {\int \frac {-2 x^2+2 x (-4+\log (4))-24 \log (4)+\left (x^2+\log (256)\right ) \log \left (x^2\right )}{(4-x)^2 (x+\log (4))^2 \left (4-\log \left (x^2\right )\right )^2} \, dx}{e^4}\\ &=\frac {\int \left (\frac {2 \left (x^2-x (4-\log (4))-\log (256)\right )}{(4-x)^2 (x+\log (4))^2 \left (4-\log \left (x^2\right )\right )^2}+\frac {x^2+\log (256)}{(-4+x)^2 (x+\log (4))^2 \left (-4+\log \left (x^2\right )\right )}\right ) \, dx}{e^4}\\ &=\frac {\int \frac {x^2+\log (256)}{(-4+x)^2 (x+\log (4))^2 \left (-4+\log \left (x^2\right )\right )} \, dx}{e^4}+\frac {2 \int \frac {x^2-x (4-\log (4))-\log (256)}{(4-x)^2 (x+\log (4))^2 \left (4-\log \left (x^2\right )\right )^2} \, dx}{e^4}\\ &=\frac {\int \frac {x^2+\log (256)}{(-4+x)^2 (x+\log (4))^2 \left (-4+\log \left (x^2\right )\right )} \, dx}{e^4}+\frac {2 \int \frac {-x-\log (4)}{(4-x) (x+\log (4))^2 \left (4-\log \left (x^2\right )\right )^2} \, dx}{e^4}\\ &=\frac {\int \frac {x^2+\log (256)}{(-4+x)^2 (x+\log (4))^2 \left (-4+\log \left (x^2\right )\right )} \, dx}{e^4}-\frac {2 \int \frac {1}{(4-x) (x+\log (4)) \left (4-\log \left (x^2\right )\right )^2} \, dx}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 39, normalized size = 1.50 \begin {gather*} -\frac {x \left (x^2+x (-4+\log (4))-\log (256)\right )}{e^4 (-4+x)^2 (x+\log (4))^2 \left (-4+\log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 51, normalized size = 1.96 \begin {gather*} \frac {x}{8 \, {\left (x - 4\right )} e^{4} \log \relax (2) + 4 \, {\left (x^{2} - 4 \, x\right )} e^{4} - {\left (2 \, {\left (x - 4\right )} e^{4} \log \relax (2) + {\left (x^{2} - 4 \, x\right )} e^{4}\right )} \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 71, normalized size = 2.73 \begin {gather*} -\frac {x}{x^{2} e^{4} \log \left (x^{2}\right ) + 2 \, x e^{4} \log \relax (2) \log \left (x^{2}\right ) - 4 \, x^{2} e^{4} - 8 \, x e^{4} \log \relax (2) - 4 \, x e^{4} \log \left (x^{2}\right ) - 8 \, e^{4} \log \relax (2) \log \left (x^{2}\right ) + 16 \, x e^{4} + 32 \, e^{4} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 29, normalized size = 1.12
method | result | size |
norman | \(-\frac {x \,{\mathrm e}^{-4}}{\left (\ln \left (x^{2}\right )-4\right ) \left (x -4\right ) \left (x +2 \ln \relax (2)\right )}\) | \(29\) |
risch | \(-\frac {x \,{\mathrm e}^{-4}}{\left (2 x \ln \relax (2)+x^{2}-8 \ln \relax (2)-4 x \right ) \left (\ln \left (x^{2}\right )-4\right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 54, normalized size = 2.08 \begin {gather*} \frac {x}{2 \, {\left (2 \, x^{2} e^{4} + 4 \, x {\left (\log \relax (2) - 2\right )} e^{4} - 16 \, e^{4} \log \relax (2) - {\left (x^{2} e^{4} + 2 \, x {\left (\log \relax (2) - 2\right )} e^{4} - 8 \, e^{4} \log \relax (2)\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.42, size = 562, normalized size = 21.62 \begin {gather*} \frac {\frac {x\,\left (4\,x+24\,\ln \relax (2)-2\,x\,\ln \relax (2)+x^2\right )}{64\,{\mathrm {e}}^4\,{\ln \relax (2)}^2+16\,x^2\,{\mathrm {e}}^4-8\,x^3\,{\mathrm {e}}^4+x^4\,{\mathrm {e}}^4-32\,x\,{\mathrm {e}}^4\,{\ln \relax (2)}^2-32\,x^2\,{\mathrm {e}}^4\,\ln \relax (2)+4\,x^3\,{\mathrm {e}}^4\,\ln \relax (2)+4\,x^2\,{\mathrm {e}}^4\,{\ln \relax (2)}^2+64\,x\,{\mathrm {e}}^4\,\ln \relax (2)}-\frac {x\,\ln \left (x^2\right )\,\left (x^2+\ln \left (256\right )\right )}{2\,\left (64\,{\mathrm {e}}^4\,{\ln \relax (2)}^2+16\,x^2\,{\mathrm {e}}^4-8\,x^3\,{\mathrm {e}}^4+x^4\,{\mathrm {e}}^4-32\,x\,{\mathrm {e}}^4\,{\ln \relax (2)}^2-32\,x^2\,{\mathrm {e}}^4\,\ln \relax (2)+4\,x^3\,{\mathrm {e}}^4\,\ln \relax (2)+4\,x^2\,{\mathrm {e}}^4\,{\ln \relax (2)}^2+64\,x\,{\mathrm {e}}^4\,\ln \relax (2)\right )}}{\ln \left (x^2\right )-4}+\frac {\frac {{\mathrm {e}}^{-4}\,\left (32\,\ln \relax (2)-6\,\ln \relax (2)\,\ln \relax (4)+3\,{\ln \relax (2)}^2\,\ln \relax (4)+36\,{\ln \relax (2)}^2+2\,{\ln \relax (2)}^3+{\ln \relax (2)}^4+16\right )\,x^3}{2\,\left (32\,\ln \relax (2)+24\,{\ln \relax (2)}^2+8\,{\ln \relax (2)}^3+{\ln \relax (2)}^4+16\right )}+\frac {{\mathrm {e}}^{-4}\,\left (32\,\ln \relax (2)-16\,\ln \relax (4)+40\,\ln \relax (2)\,\ln \relax (4)-96\,{\ln \relax (2)}^2\,\ln \relax (4)+10\,{\ln \relax (2)}^3\,\ln \relax (4)-{\ln \relax (2)}^4\,\ln \relax (4)-80\,{\ln \relax (2)}^2+192\,{\ln \relax (2)}^3-20\,{\ln \relax (2)}^4+2\,{\ln \relax (2)}^5\right )\,x^2}{4\,\left (32\,\ln \relax (2)+24\,{\ln \relax (2)}^2+8\,{\ln \relax (2)}^3+{\ln \relax (2)}^4+16\right )}+\frac {2\,{\mathrm {e}}^{-4}\,\left (32\,\ln \relax (2)-8\,\ln \relax (2)\,\ln \relax (4)+32\,{\ln \relax (2)}^2\,\ln \relax (4)-16\,{\ln \relax (2)}^3\,\ln \relax (4)+{\ln \relax (2)}^4\,\ln \relax (4)+80\,{\ln \relax (2)}^2-16\,{\ln \relax (2)}^3+48\,{\ln \relax (2)}^4\right )\,x}{32\,\ln \relax (2)+24\,{\ln \relax (2)}^2+8\,{\ln \relax (2)}^3+{\ln \relax (2)}^4+16}-\frac {4\,{\mathrm {e}}^{-4}\,\left (4\,{\ln \relax (2)}^2\,\ln \relax (4)-20\,{\ln \relax (2)}^3\,\ln \relax (4)+{\ln \relax (2)}^4\,\ln \relax (4)-8\,{\ln \relax (2)}^3+40\,{\ln \relax (2)}^4-2\,{\ln \relax (2)}^5\right )}{32\,\ln \relax (2)+24\,{\ln \relax (2)}^2+8\,{\ln \relax (2)}^3+{\ln \relax (2)}^4+16}}{x^4+\left (4\,\ln \relax (2)-8\right )\,x^3+\left (4\,{\ln \relax (2)}^2-32\,\ln \relax (2)+16\right )\,x^2+\left (64\,\ln \relax (2)-32\,{\ln \relax (2)}^2\right )\,x+64\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.25, size = 73, normalized size = 2.81 \begin {gather*} - \frac {x}{- 4 x^{2} e^{4} - 8 x e^{4} \log {\relax (2 )} + 16 x e^{4} + \left (x^{2} e^{4} - 4 x e^{4} + 2 x e^{4} \log {\relax (2 )} - 8 e^{4} \log {\relax (2 )}\right ) \log {\left (x^{2} \right )} + 32 e^{4} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________