Optimal. Leaf size=27 \[ e^{-x} \left (x+\frac {\log \left (-e^{4 \left (3+e^3\right )+x}\right )}{\log (5)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 42, normalized size of antiderivative = 1.56, number of steps used = 8, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 6742, 2194, 2176, 2554} \begin {gather*} -e^{-x} (1-x)+e^{-x}+\frac {e^{-x} \log \left (-e^{x+4 \left (3+e^3\right )}\right )}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-x} \left (1+(1-x) \log (5)-\log \left (-e^{12+4 e^3+x}\right )\right ) \, dx}{\log (5)}\\ &=\frac {\int \left (e^{-x}-e^{-x} (-1+x) \log (5)-e^{-x} \log \left (-e^{12+4 e^3+x}\right )\right ) \, dx}{\log (5)}\\ &=\frac {\int e^{-x} \, dx}{\log (5)}-\frac {\int e^{-x} \log \left (-e^{12+4 e^3+x}\right ) \, dx}{\log (5)}-\int e^{-x} (-1+x) \, dx\\ &=-e^{-x} (1-x)-\frac {e^{-x}}{\log (5)}+\frac {e^{-x} \log \left (-e^{4 \left (3+e^3\right )+x}\right )}{\log (5)}-\frac {\int e^{-x} \, dx}{\log (5)}-\int e^{-x} \, dx\\ &=e^{-x}-e^{-x} (1-x)+\frac {e^{-x} \log \left (-e^{4 \left (3+e^3\right )+x}\right )}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 1.04 \begin {gather*} \frac {e^{-x} \left (x \log (5)+\log \left (-e^{12+4 e^3+x}\right )\right )}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.66, size = 23, normalized size = 0.85 \begin {gather*} \frac {{\left (i \, \pi + x \log \relax (5) + x + 4 \, e^{3} + 12\right )} e^{\left (-x\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 34, normalized size = 1.26 \begin {gather*} \frac {x e^{\left (-x\right )} \log \relax (5) + x e^{\left (-x\right )} + 12 \, e^{\left (-x\right )} + 4 \, e^{\left (-x + 3\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 0.93
method | result | size |
norman | \(\left (x +\frac {\ln \left (-{\mathrm e}^{4 \,{\mathrm e}^{3}+12} {\mathrm e}^{x}\right )}{\ln \relax (5)}\right ) {\mathrm e}^{-x}\) | \(25\) |
default | \(\frac {12 \,{\mathrm e}^{-x}+x \,{\mathrm e}^{-x}+{\mathrm e}^{-x} \left (\ln \left (-{\mathrm e}^{4 \,{\mathrm e}^{3}+x +12}\right )-4 \,{\mathrm e}^{3}-x -12\right )+4 \,{\mathrm e}^{-x} {\mathrm e}^{3}+{\mathrm e}^{-x} x \ln \relax (5)}{\ln \relax (5)}\) | \(60\) |
risch | \(\frac {{\mathrm e}^{-x} \ln \left ({\mathrm e}^{x}\right )}{\ln \relax (5)}+\frac {\left (-2 i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}+2 i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{3}+2 i \pi +8 \,{\mathrm e}^{3}+24+2 x \ln \relax (5)\right ) {\mathrm e}^{-x}}{2 \ln \relax (5)}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 40, normalized size = 1.48 \begin {gather*} \frac {{\left (x + 1\right )} e^{\left (-x\right )} \log \relax (5) - e^{\left (-x\right )} \log \relax (5) + e^{\left (-x\right )} \log \left (-e^{\left (x + 4 \, e^{3} + 12\right )}\right )}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 24, normalized size = 0.89 \begin {gather*} \frac {{\mathrm {e}}^{-x}\,\left (4\,{\mathrm {e}}^3+\ln \left (-{\mathrm {e}}^x\right )+x\,\ln \relax (5)+12\right )}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.20, size = 26, normalized size = 0.96 \begin {gather*} - \frac {\left (- x \log {\relax (5 )} - x - 4 e^{3} - 12 - i \pi \right ) e^{- x}}{\log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________