3.9.55 \(\int \frac {12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)+(12 e^{e^{\frac {1}{3} (12-7 x)}}+112 e^{\frac {1}{3} (12-7 x)} x) \log (e^{-2 e^{\frac {1}{3} (12-7 x)}} (320+160 e^{e^{\frac {1}{3} (12-7 x)}} \log (x)+20 e^{2 e^{\frac {1}{3} (12-7 x)}} \log ^2(x)))}{12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)} \, dx\)

Optimal. Leaf size=27 \[ x+\log ^2\left (20 \left (4 e^{-e^{4-\frac {7 x}{3}}}+\log (x)\right )^2\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 3.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)+\left (12 e^{e^{\frac {1}{3} (12-7 x)}}+112 e^{\frac {1}{3} (12-7 x)} x\right ) \log \left (e^{-2 e^{\frac {1}{3} (12-7 x)}} \left (320+160 e^{e^{\frac {1}{3} (12-7 x)}} \log (x)+20 e^{2 e^{\frac {1}{3} (12-7 x)}} \log ^2(x)\right )\right )}{12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(12*x + 3*E^E^((12 - 7*x)/3)*x*Log[x] + (12*E^E^((12 - 7*x)/3) + 112*E^((12 - 7*x)/3)*x)*Log[(320 + 160*E^
E^((12 - 7*x)/3)*Log[x] + 20*E^(2*E^((12 - 7*x)/3))*Log[x]^2)/E^(2*E^((12 - 7*x)/3))])/(12*x + 3*E^E^((12 - 7*
x)/3)*x*Log[x]),x]

[Out]

x + 4*Defer[Int][Log[(20*(4 + E^E^(4 - (7*x)/3)*Log[x])^2)/E^(2*E^(4 - (7*x)/3))]/(x*Log[x]), x] + (112*Defer[
Int][(E^(4 - (7*x)/3)*Log[(20*(4 + E^E^(4 - (7*x)/3)*Log[x])^2)/E^(2*E^(4 - (7*x)/3))])/(4 + E^E^(4 - (7*x)/3)
*Log[x]), x])/3 - 16*Defer[Int][Log[(20*(4 + E^E^(4 - (7*x)/3)*Log[x])^2)/E^(2*E^(4 - (7*x)/3))]/(x*Log[x]*(4
+ E^E^(4 - (7*x)/3)*Log[x])), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)+\left (12 e^{e^{\frac {1}{3} (12-7 x)}}+112 e^{\frac {1}{3} (12-7 x)} x\right ) \log \left (e^{-2 e^{\frac {1}{3} (12-7 x)}} \left (320+160 e^{e^{\frac {1}{3} (12-7 x)}} \log (x)+20 e^{2 e^{\frac {1}{3} (12-7 x)}} \log ^2(x)\right )\right )}{3 x \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx\\ &=\frac {1}{3} \int \frac {12 x+3 e^{e^{\frac {1}{3} (12-7 x)}} x \log (x)+\left (12 e^{e^{\frac {1}{3} (12-7 x)}}+112 e^{\frac {1}{3} (12-7 x)} x\right ) \log \left (e^{-2 e^{\frac {1}{3} (12-7 x)}} \left (320+160 e^{e^{\frac {1}{3} (12-7 x)}} \log (x)+20 e^{2 e^{\frac {1}{3} (12-7 x)}} \log ^2(x)\right )\right )}{x \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {112 e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)}+\frac {3 \left (4 x+e^{e^{4-\frac {7 x}{3}}} x \log (x)+4 e^{e^{4-\frac {7 x}{3}}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )\right )}{x \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )}\right ) \, dx\\ &=\frac {112}{3} \int \frac {e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)} \, dx+\int \frac {4 x+e^{e^{4-\frac {7 x}{3}}} x \log (x)+4 e^{e^{4-\frac {7 x}{3}}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx\\ &=\frac {112}{3} \int \frac {e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)} \, dx+\int \left (-\frac {16 \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x) \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )}+\frac {x \log (x)+4 \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x)}\right ) \, dx\\ &=-\left (16 \int \frac {\log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x) \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx\right )+\frac {112}{3} \int \frac {e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)} \, dx+\int \frac {x \log (x)+4 \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x)} \, dx\\ &=-\left (16 \int \frac {\log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x) \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx\right )+\frac {112}{3} \int \frac {e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)} \, dx+\int \left (1+\frac {4 \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x)}\right ) \, dx\\ &=x+4 \int \frac {\log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x)} \, dx-16 \int \frac {\log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{x \log (x) \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )} \, dx+\frac {112}{3} \int \frac {e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )}{4+e^{e^{4-\frac {7 x}{3}}} \log (x)} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [B]  time = 0.32, size = 166, normalized size = 6.15 \begin {gather*} -4 e^{8-\frac {14 x}{3}}+x+\log ^2\left (\left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )-4 e^{4-\frac {7 x}{3}} \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )+\log \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right ) \left (8 e^{4-\frac {7 x}{3}}-4 \log \left (\left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )+4 \log \left (20 e^{-2 e^{4-\frac {7 x}{3}}} \left (4+e^{e^{4-\frac {7 x}{3}}} \log (x)\right )^2\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(12*x + 3*E^E^((12 - 7*x)/3)*x*Log[x] + (12*E^E^((12 - 7*x)/3) + 112*E^((12 - 7*x)/3)*x)*Log[(320 +
160*E^E^((12 - 7*x)/3)*Log[x] + 20*E^(2*E^((12 - 7*x)/3))*Log[x]^2)/E^(2*E^((12 - 7*x)/3))])/(12*x + 3*E^E^((1
2 - 7*x)/3)*x*Log[x]),x]

[Out]

-4*E^(8 - (14*x)/3) + x + Log[(4 + E^E^(4 - (7*x)/3)*Log[x])^2]^2 - 4*E^(4 - (7*x)/3)*Log[(20*(4 + E^E^(4 - (7
*x)/3)*Log[x])^2)/E^(2*E^(4 - (7*x)/3))] + Log[4 + E^E^(4 - (7*x)/3)*Log[x]]*(8*E^(4 - (7*x)/3) - 4*Log[(4 + E
^E^(4 - (7*x)/3)*Log[x])^2] + 4*Log[(20*(4 + E^E^(4 - (7*x)/3)*Log[x])^2)/E^(2*E^(4 - (7*x)/3))])

________________________________________________________________________________________

fricas [A]  time = 0.98, size = 43, normalized size = 1.59 \begin {gather*} \log \left (20 \, {\left (e^{\left (2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x)^{2} + 8 \, e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 16\right )} e^{\left (-2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )}\right )^{2} + x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*log((20*log(x)^2*exp(exp(-7/3*x+4))^2+160*log(x)*exp(ex
p(-7/3*x+4))+320)/exp(exp(-7/3*x+4))^2)+3*x*log(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*log(x)*exp(exp(-7/3*x+4))+12*
x),x, algorithm="fricas")

[Out]

log(20*(e^(2*e^(-7/3*x + 4))*log(x)^2 + 8*e^(e^(-7/3*x + 4))*log(x) + 16)*e^(-2*e^(-7/3*x + 4)))^2 + x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, x e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 4 \, {\left (28 \, x e^{\left (-\frac {7}{3} \, x + 4\right )} + 3 \, e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )}\right )} \log \left (20 \, {\left (e^{\left (2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x)^{2} + 8 \, e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 16\right )} e^{\left (-2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )}\right ) + 12 \, x}{3 \, {\left (x e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 4 \, x\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*log((20*log(x)^2*exp(exp(-7/3*x+4))^2+160*log(x)*exp(ex
p(-7/3*x+4))+320)/exp(exp(-7/3*x+4))^2)+3*x*log(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*log(x)*exp(exp(-7/3*x+4))+12*
x),x, algorithm="giac")

[Out]

integrate(1/3*(3*x*e^(e^(-7/3*x + 4))*log(x) + 4*(28*x*e^(-7/3*x + 4) + 3*e^(e^(-7/3*x + 4)))*log(20*(e^(2*e^(
-7/3*x + 4))*log(x)^2 + 8*e^(e^(-7/3*x + 4))*log(x) + 16)*e^(-2*e^(-7/3*x + 4))) + 12*x)/(x*e^(e^(-7/3*x + 4))
*log(x) + 4*x), x)

________________________________________________________________________________________

maple [F]  time = 0.13, size = 0, normalized size = 0.00 \[\int \frac {\left (12 \,{\mathrm e}^{{\mathrm e}^{-\frac {7 x}{3}+4}}+112 x \,{\mathrm e}^{-\frac {7 x}{3}+4}\right ) \ln \left (\left (20 \ln \relax (x )^{2} {\mathrm e}^{2 \,{\mathrm e}^{-\frac {7 x}{3}+4}}+160 \ln \relax (x ) {\mathrm e}^{{\mathrm e}^{-\frac {7 x}{3}+4}}+320\right ) {\mathrm e}^{-2 \,{\mathrm e}^{-\frac {7 x}{3}+4}}\right )+3 x \ln \relax (x ) {\mathrm e}^{{\mathrm e}^{-\frac {7 x}{3}+4}}+12 x}{3 x \ln \relax (x ) {\mathrm e}^{{\mathrm e}^{-\frac {7 x}{3}+4}}+12 x}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*ln((20*ln(x)^2*exp(exp(-7/3*x+4))^2+160*ln(x)*exp(exp(-7/3*x+
4))+320)/exp(exp(-7/3*x+4))^2)+3*x*ln(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*ln(x)*exp(exp(-7/3*x+4))+12*x),x)

[Out]

int(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*ln((20*ln(x)^2*exp(exp(-7/3*x+4))^2+160*ln(x)*exp(exp(-7/3*x+
4))+320)/exp(exp(-7/3*x+4))^2)+3*x*ln(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*ln(x)*exp(exp(-7/3*x+4))+12*x),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{3} \, \int \frac {3 \, x e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 4 \, {\left (28 \, x e^{\left (-\frac {7}{3} \, x + 4\right )} + 3 \, e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )}\right )} \log \left (20 \, {\left (e^{\left (2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x)^{2} + 8 \, e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 16\right )} e^{\left (-2 \, e^{\left (-\frac {7}{3} \, x + 4\right )}\right )}\right ) + 12 \, x}{x e^{\left (e^{\left (-\frac {7}{3} \, x + 4\right )}\right )} \log \relax (x) + 4 \, x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*log((20*log(x)^2*exp(exp(-7/3*x+4))^2+160*log(x)*exp(ex
p(-7/3*x+4))+320)/exp(exp(-7/3*x+4))^2)+3*x*log(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*log(x)*exp(exp(-7/3*x+4))+12*
x),x, algorithm="maxima")

[Out]

1/3*integrate((3*x*e^(e^(-7/3*x + 4))*log(x) + 4*(28*x*e^(-7/3*x + 4) + 3*e^(e^(-7/3*x + 4)))*log(20*(e^(2*e^(
-7/3*x + 4))*log(x)^2 + 8*e^(e^(-7/3*x + 4))*log(x) + 16)*e^(-2*e^(-7/3*x + 4))) + 12*x)/(x*e^(e^(-7/3*x + 4))
*log(x) + 4*x), x)

________________________________________________________________________________________

mupad [B]  time = 0.88, size = 36, normalized size = 1.33 \begin {gather*} {\ln \left (20\,{\ln \relax (x)}^2+160\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^4}{{\left ({\mathrm {e}}^x\right )}^{7/3}}}\,\ln \relax (x)+320\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^4}{{\left ({\mathrm {e}}^x\right )}^{7/3}}}\right )}^2+x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((12*x + log(exp(-2*exp(4 - (7*x)/3))*(20*exp(2*exp(4 - (7*x)/3))*log(x)^2 + 160*exp(exp(4 - (7*x)/3))*log(
x) + 320))*(12*exp(exp(4 - (7*x)/3)) + 112*x*exp(4 - (7*x)/3)) + 3*x*exp(exp(4 - (7*x)/3))*log(x))/(12*x + 3*x
*exp(exp(4 - (7*x)/3))*log(x)),x)

[Out]

x + log(320*exp(-(2*exp(4))/exp(x)^(7/3)) + 20*log(x)^2 + 160*exp(-exp(4)/exp(x)^(7/3))*log(x))^2

________________________________________________________________________________________

sympy [B]  time = 2.62, size = 51, normalized size = 1.89 \begin {gather*} x + \log {\left (\left (20 e^{2 e^{4 - \frac {7 x}{3}}} \log {\relax (x )}^{2} + 160 e^{e^{4 - \frac {7 x}{3}}} \log {\relax (x )} + 320\right ) e^{- 2 e^{4 - \frac {7 x}{3}}} \right )}^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*exp(exp(-7/3*x+4))+112*x*exp(-7/3*x+4))*ln((20*ln(x)**2*exp(exp(-7/3*x+4))**2+160*ln(x)*exp(exp
(-7/3*x+4))+320)/exp(exp(-7/3*x+4))**2)+3*x*ln(x)*exp(exp(-7/3*x+4))+12*x)/(3*x*ln(x)*exp(exp(-7/3*x+4))+12*x)
,x)

[Out]

x + log((20*exp(2*exp(4 - 7*x/3))*log(x)**2 + 160*exp(exp(4 - 7*x/3))*log(x) + 320)*exp(-2*exp(4 - 7*x/3)))**2

________________________________________________________________________________________