Optimal. Leaf size=33 \[ \frac {2}{\left (3-e^{4-x}-x\right ) x}+x+(4-x) x+x^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6+4 x+45 x^2+5 e^{8-2 x} x^2-30 x^3+5 x^4+e^{4-x} \left (2-2 x-30 x^2+10 x^3\right )}{9 x^2+e^{8-2 x} x^2-6 x^3+x^4+e^{4-x} \left (-6 x^2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^8 x^2+2 e^{4+x} \left (1-x-15 x^2+5 x^3\right )+e^{2 x} \left (-6+4 x+45 x^2-30 x^3+5 x^4\right )}{\left (e^4+e^x (-3+x)\right )^2 x^2} \, dx\\ &=\int \left (\frac {2 e^8 (-2+x)}{(-3+x)^2 x \left (e^4-3 e^x+e^x x\right )^2}-\frac {2 e^4 \left (-3+x^2\right )}{(-3+x)^2 x^2 \left (e^4-3 e^x+e^x x\right )}+\frac {-6+4 x+45 x^2-30 x^3+5 x^4}{(-3+x)^2 x^2}\right ) \, dx\\ &=-\left (\left (2 e^4\right ) \int \frac {-3+x^2}{(-3+x)^2 x^2 \left (e^4-3 e^x+e^x x\right )} \, dx\right )+\left (2 e^8\right ) \int \frac {-2+x}{(-3+x)^2 x \left (e^4-3 e^x+e^x x\right )^2} \, dx+\int \frac {-6+4 x+45 x^2-30 x^3+5 x^4}{(-3+x)^2 x^2} \, dx\\ &=-\left (\left (2 e^4\right ) \int \left (\frac {2}{3 (-3+x)^2 \left (e^4-3 e^x+e^x x\right )}+\frac {2}{9 (-3+x) \left (e^4-3 e^x+e^x x\right )}-\frac {1}{3 x^2 \left (e^4-3 e^x+e^x x\right )}-\frac {2}{9 x \left (e^4-3 e^x+e^x x\right )}\right ) \, dx\right )+\left (2 e^8\right ) \int \left (\frac {1}{3 (-3+x)^2 \left (e^4-3 e^x+e^x x\right )^2}+\frac {2}{9 (-3+x) \left (e^4-3 e^x+e^x x\right )^2}-\frac {2}{9 x \left (e^4-3 e^x+e^x x\right )^2}\right ) \, dx+\int \left (5+\frac {2}{3 (-3+x)^2}-\frac {2}{3 x^2}\right ) \, dx\\ &=\frac {2}{3 (3-x)}+\frac {2}{3 x}+5 x-\frac {1}{9} \left (4 e^4\right ) \int \frac {1}{(-3+x) \left (e^4-3 e^x+e^x x\right )} \, dx+\frac {1}{9} \left (4 e^4\right ) \int \frac {1}{x \left (e^4-3 e^x+e^x x\right )} \, dx+\frac {1}{3} \left (2 e^4\right ) \int \frac {1}{x^2 \left (e^4-3 e^x+e^x x\right )} \, dx-\frac {1}{3} \left (4 e^4\right ) \int \frac {1}{(-3+x)^2 \left (e^4-3 e^x+e^x x\right )} \, dx+\frac {1}{9} \left (4 e^8\right ) \int \frac {1}{(-3+x) \left (e^4-3 e^x+e^x x\right )^2} \, dx-\frac {1}{9} \left (4 e^8\right ) \int \frac {1}{x \left (e^4-3 e^x+e^x x\right )^2} \, dx+\frac {1}{3} \left (2 e^8\right ) \int \frac {1}{(-3+x)^2 \left (e^4-3 e^x+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 42, normalized size = 1.27 \begin {gather*} \frac {5 e^4 x^2+e^x \left (-2-15 x^2+5 x^3\right )}{\left (e^4+e^x (-3+x)\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 41, normalized size = 1.24 \begin {gather*} \frac {5 \, x^{3} + 5 \, x^{2} e^{\left (-x + 4\right )} - 15 \, x^{2} - 2}{x^{2} + x e^{\left (-x + 4\right )} - 3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 180, normalized size = 5.45 \begin {gather*} \frac {5 \, x^{6} e^{x} + 10 \, x^{5} e^{4} - 45 \, x^{5} e^{x} - 60 \, x^{4} e^{4} + 145 \, x^{4} e^{x} + 5 \, x^{4} e^{\left (-x + 8\right )} + 110 \, x^{3} e^{4} - 197 \, x^{3} e^{x} - 15 \, x^{3} e^{\left (-x + 8\right )} - 62 \, x^{2} e^{4} + 100 \, x^{2} e^{x} + 10 \, x^{2} e^{\left (-x + 8\right )} + 4 \, x e^{4} - 12 \, x e^{x}}{x^{5} e^{x} + 2 \, x^{4} e^{4} - 8 \, x^{4} e^{x} - 10 \, x^{3} e^{4} + 21 \, x^{3} e^{x} + x^{3} e^{\left (-x + 8\right )} + 12 \, x^{2} e^{4} - 18 \, x^{2} e^{x} - 2 \, x^{2} e^{\left (-x + 8\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 21, normalized size = 0.64
method | result | size |
risch | \(5 x -\frac {2}{x \left (-3+{\mathrm e}^{-x +4}+x \right )}\) | \(21\) |
norman | \(\frac {-2-15 x^{2}+5 x^{3}+5 x^{2} {\mathrm e}^{-x +4}}{x \left (-3+{\mathrm e}^{-x +4}+x \right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 41, normalized size = 1.24 \begin {gather*} \frac {5 \, x^{2} e^{4} + {\left (5 \, x^{3} - 15 \, x^{2} - 2\right )} e^{x}}{x e^{4} + {\left (x^{2} - 3 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.32, size = 23, normalized size = 0.70 \begin {gather*} 5\,x-\frac {2}{x\,{\mathrm {e}}^{4-x}-3\,x+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.52 \begin {gather*} 5 x - \frac {2}{x^{2} + x e^{4 - x} - 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________