Optimal. Leaf size=19 \[ \frac {3}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6+3 x+(-3 x+(12-6 x) \log (4)) \log (x)+(12-6 x) \log (x) \log \left (\frac {-2+x}{\log (x)}\right )}{\left (-2 x^3+x^4\right ) \log ^2(4) \log (x)+\left (-4 x^3+2 x^4\right ) \log (4) \log (x) \log \left (\frac {-2+x}{\log (x)}\right )+\left (-2 x^3+x^4\right ) \log (x) \log ^2\left (\frac {-2+x}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6-3 x+3 \log (x) \left (x-4 \log (4)+x \log (16)+2 (-2+x) \log \left (\frac {-2+x}{\log (x)}\right )\right )}{(2-x) x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx\\ &=\int \left (-\frac {3 (2-x+x \log (x))}{(-2+x) x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}-\frac {6}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {2-x+x \log (x)}{(-2+x) x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx\right )-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=-\left (3 \int \left (\frac {-2+x-x \log (x)}{2 x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {-2+x-x \log (x)}{4 x^2 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {-2+x-x \log (x)}{8 x \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {2-x+x \log (x)}{8 (-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx\right )-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=-\left (\frac {3}{8} \int \frac {-2+x-x \log (x)}{x \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx\right )-\frac {3}{8} \int \frac {2-x+x \log (x)}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{4} \int \frac {-2+x-x \log (x)}{x^2 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{2} \int \frac {-2+x-x \log (x)}{x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=-\left (\frac {3}{8} \int \left (-\frac {1}{\left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {1}{\log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}-\frac {2}{x \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx\right )-\frac {3}{8} \int \left (\frac {x}{(-2+x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {2}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}-\frac {x}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx-\frac {3}{4} \int \left (-\frac {1}{x \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}-\frac {2}{x^2 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {1}{x \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx-\frac {3}{2} \int \left (-\frac {1}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}-\frac {2}{x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {1}{x^2 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=\frac {3}{8} \int \frac {1}{\left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{8} \int \frac {x}{(-2+x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{8} \int \frac {1}{\log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+\frac {3}{8} \int \frac {x}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+\frac {3}{4} \int \frac {1}{x \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{4} \int \frac {1}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+\frac {3}{2} \int \frac {1}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+3 \int \frac {1}{x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=\frac {3}{8} \int \frac {1}{\left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{8} \int \frac {1}{\log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{8} \int \left (\frac {1}{\left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {2}{(-2+x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx+\frac {3}{8} \int \left (\frac {1}{\log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}+\frac {2}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2}\right ) \, dx+\frac {3}{4} \int \frac {1}{x \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-\frac {3}{4} \int \frac {1}{(-2+x) \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+\frac {3}{2} \int \frac {1}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+3 \int \frac {1}{x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {1}{(-2+x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx\right )+\frac {3}{4} \int \frac {1}{x \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+\frac {3}{2} \int \frac {1}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx+3 \int \frac {1}{x^3 \log (x) \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )^2} \, dx-6 \int \frac {1}{x^3 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 19, normalized size = 1.00 \begin {gather*} \frac {3}{x^2 \left (\log (4)+\log \left (\frac {-2+x}{\log (x)}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 25, normalized size = 1.32 \begin {gather*} \frac {3}{2 \, x^{2} \log \relax (2) + x^{2} \log \left (\frac {x - 2}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 28, normalized size = 1.47 \begin {gather*} \frac {3}{2 \, x^{2} \log \relax (2) + x^{2} \log \left (x - 2\right ) - x^{2} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 118, normalized size = 6.21
| method | result | size |
| risch | \(-\frac {6 i}{x^{2} \left (\pi \,\mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x -2\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -2\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-\pi \mathrm {csgn}\left (\frac {i \left (x -2\right )}{\ln \relax (x )}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left (x -2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-4 i \ln \relax (2)+2 i \ln \left (\ln \relax (x )\right )-2 i \ln \left (x -2\right )\right )}\) | \(118\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 28, normalized size = 1.47 \begin {gather*} \frac {3}{2 \, x^{2} \log \relax (2) + x^{2} \log \left (x - 2\right ) - x^{2} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {\ln \relax (x)\,\left (3\,x+2\,\ln \relax (2)\,\left (6\,x-12\right )\right )-3\,x+\ln \relax (x)\,\ln \left (\frac {x-2}{\ln \relax (x)}\right )\,\left (6\,x-12\right )+6}{\ln \relax (x)\,\left (2\,x^3-x^4\right )\,{\ln \left (\frac {x-2}{\ln \relax (x)}\right )}^2+2\,\ln \relax (2)\,\ln \relax (x)\,\left (4\,x^3-2\,x^4\right )\,\ln \left (\frac {x-2}{\ln \relax (x)}\right )+4\,{\ln \relax (2)}^2\,\ln \relax (x)\,\left (2\,x^3-x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 1.05 \begin {gather*} \frac {3}{x^{2} \log {\left (\frac {x - 2}{\log {\relax (x )}} \right )} + 2 x^{2} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________