3.87.39 \(\int \frac {243 x^4+3^x (-4 e+4 e x \log (3))}{9 x^2} \, dx\)

Optimal. Leaf size=21 \[ 9 x^3+\frac {e \left (4\ 3^x+x\right )}{9 x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.81, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 14, 2197} \begin {gather*} 9 x^3+\frac {4 e 3^{x-2}}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(243*x^4 + 3^x*(-4*E + 4*E*x*Log[3]))/(9*x^2),x]

[Out]

(4*3^(-2 + x)*E)/x + 9*x^3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {243 x^4+3^x (-4 e+4 e x \log (3))}{x^2} \, dx\\ &=\frac {1}{9} \int \left (243 x^2+\frac {4\ 3^x e (-1+x \log (3))}{x^2}\right ) \, dx\\ &=9 x^3+\frac {1}{9} (4 e) \int \frac {3^x (-1+x \log (3))}{x^2} \, dx\\ &=\frac {4\ 3^{-2+x} e}{x}+9 x^3\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 17, normalized size = 0.81 \begin {gather*} \frac {4\ 3^{-2+x} e}{x}+9 x^3 \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(243*x^4 + 3^x*(-4*E + 4*E*x*Log[3]))/(9*x^2),x]

[Out]

(4*3^(-2 + x)*E)/x + 9*x^3

________________________________________________________________________________________

fricas [A]  time = 0.95, size = 18, normalized size = 0.86 \begin {gather*} \frac {81 \, x^{4} + 4 \cdot 3^{x} e}{9 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*((4*x*exp(1)*log(3)-4*exp(1))*exp(x*log(3))+243*x^4)/x^2,x, algorithm="fricas")

[Out]

1/9*(81*x^4 + 4*3^x*e)/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {243 \, x^{4} + 4 \, {\left (x e \log \relax (3) - e\right )} 3^{x}}{9 \, x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*((4*x*exp(1)*log(3)-4*exp(1))*exp(x*log(3))+243*x^4)/x^2,x, algorithm="giac")

[Out]

integrate(1/9*(243*x^4 + 4*(x*e*log(3) - e)*3^x)/x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.12, size = 17, normalized size = 0.81




method result size



risch \(9 x^{3}+\frac {4 \,{\mathrm e} 3^{x}}{9 x}\) \(17\)
norman \(\frac {9 x^{4}+\frac {4 \,{\mathrm e} \,{\mathrm e}^{x \ln \relax (3)}}{9}}{x}\) \(20\)
derivativedivides \(\frac {\ln \relax (3) \left (\frac {81 x^{3}}{\ln \relax (3)}-4 \,{\mathrm e} \left (-\frac {{\mathrm e}^{x \ln \relax (3)}}{x \ln \relax (3)}-\expIntegralEi \left (1, -x \ln \relax (3)\right )\right )-4 \,{\mathrm e} \expIntegralEi \left (1, -x \ln \relax (3)\right )\right )}{9}\) \(54\)
default \(\frac {\ln \relax (3) \left (\frac {81 x^{3}}{\ln \relax (3)}-4 \,{\mathrm e} \left (-\frac {{\mathrm e}^{x \ln \relax (3)}}{x \ln \relax (3)}-\expIntegralEi \left (1, -x \ln \relax (3)\right )\right )-4 \,{\mathrm e} \expIntegralEi \left (1, -x \ln \relax (3)\right )\right )}{9}\) \(54\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/9*((4*x*exp(1)*ln(3)-4*exp(1))*exp(x*ln(3))+243*x^4)/x^2,x,method=_RETURNVERBOSE)

[Out]

9*x^3+4/9*exp(1)/x*3^x

________________________________________________________________________________________

maxima [C]  time = 0.50, size = 30, normalized size = 1.43 \begin {gather*} 9 \, x^{3} + \frac {4}{9} \, {\rm Ei}\left (x \log \relax (3)\right ) e \log \relax (3) - \frac {4}{9} \, e \Gamma \left (-1, -x \log \relax (3)\right ) \log \relax (3) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*((4*x*exp(1)*log(3)-4*exp(1))*exp(x*log(3))+243*x^4)/x^2,x, algorithm="maxima")

[Out]

9*x^3 + 4/9*Ei(x*log(3))*e*log(3) - 4/9*e*gamma(-1, -x*log(3))*log(3)

________________________________________________________________________________________

mupad [B]  time = 5.45, size = 16, normalized size = 0.76 \begin {gather*} 9\,x^3+\frac {4\,3^x\,\mathrm {e}}{9\,x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(x*log(3))*(4*exp(1) - 4*x*exp(1)*log(3)))/9 - 27*x^4)/x^2,x)

[Out]

9*x^3 + (4*3^x*exp(1))/(9*x)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 19, normalized size = 0.90 \begin {gather*} 9 x^{3} + \frac {4 e e^{x \log {\relax (3 )}}}{9 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/9*((4*x*exp(1)*ln(3)-4*exp(1))*exp(x*ln(3))+243*x**4)/x**2,x)

[Out]

9*x**3 + 4*E*exp(x*log(3))/(9*x)

________________________________________________________________________________________