Optimal. Leaf size=26 \[ e^{3-x} x \left (-e^x+x\right )+5 x \log (\log (3 \log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+\left (-e^3+e^{3-x} \left (2 x-x^2\right )\right ) \log (x) \log (3 \log (x))+5 \log (x) \log (3 \log (x)) \log (\log (3 \log (x)))}{\log (x) \log (3 \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{3-x} \left (e^x+(-2+x) x\right )+\frac {5}{\log (x) \log (3 \log (x))}+5 \log (\log (3 \log (x)))\right ) \, dx\\ &=5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx-\int e^{3-x} \left (e^x+(-2+x) x\right ) \, dx\\ &=5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx-\int \left (e^3+e^{3-x} (-2+x) x\right ) \, dx\\ &=-e^3 x+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx-\int e^{3-x} (-2+x) x \, dx\\ &=-e^3 x+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx-\int \left (-2 e^{3-x} x+e^{3-x} x^2\right ) \, dx\\ &=-e^3 x+2 \int e^{3-x} x \, dx+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx-\int e^{3-x} x^2 \, dx\\ &=-e^3 x-2 e^{3-x} x+e^{3-x} x^2+2 \int e^{3-x} \, dx-2 \int e^{3-x} x \, dx+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx\\ &=-2 e^{3-x}-e^3 x+e^{3-x} x^2-2 \int e^{3-x} \, dx+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx\\ &=-e^3 x+e^{3-x} x^2+5 \int \frac {1}{\log (x) \log (3 \log (x))} \, dx+5 \int \log (\log (3 \log (x))) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 0.92 \begin {gather*} x \left (e^3 \left (-1+e^{-x} x\right )+5 \log (\log (3 \log (x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 25, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (-x + 3\right )} - x e^{3} + 5 \, x \log \left (\log \left (3 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 25, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (-x + 3\right )} - x e^{3} + 5 \, x \log \left (\log \left (3 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 25, normalized size = 0.96
method | result | size |
risch | \({\mathrm e}^{3-x} \left (x -{\mathrm e}^{x}\right ) x +5 \ln \left (\ln \left (3 \ln \relax (x )\right )\right ) x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 50, normalized size = 1.92 \begin {gather*} -x e^{3} + {\left (x^{2} e^{3} + 2 \, x e^{3} + 2 \, e^{3}\right )} e^{\left (-x\right )} - 2 \, {\left (x e^{3} + e^{3}\right )} e^{\left (-x\right )} + 5 \, x \log \left (\log \relax (3) + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.91, size = 25, normalized size = 0.96 \begin {gather*} x^2\,{\mathrm {e}}^{3-x}-x\,{\mathrm {e}}^3+5\,x\,\ln \left (\ln \left (3\,\ln \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.12, size = 26, normalized size = 1.00 \begin {gather*} x^{2} e^{3} e^{- x} + 5 x \log {\left (\log {\left (3 \log {\relax (x )} \right )} \right )} - x e^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________