Optimal. Leaf size=26 \[ \left (2-\log \left (1+\frac {1}{31} (-3-x)+x\right )\right ) \log (x+x (2+x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.43, antiderivative size = 67, normalized size of antiderivative = 2.58, number of steps used = 16, number of rules used = 8, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {1594, 6728, 2494, 2392, 2391, 2394, 2393, 2418} \begin {gather*} \log (14) \log (x)+\left (2+\log \left (\frac {31}{28}\right )\right ) \log (x)+\log \left (\frac {15 (x+3)}{31}\right ) \left (2-\log \left (\frac {2}{31} (15 x+14)\right )\right )+\log \left (\frac {15 (x+3)}{31}\right ) \log (15 x+14)-\log (x (x+3)) \log (15 x+14) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2391
Rule 2392
Rule 2393
Rule 2394
Rule 2418
Rule 2494
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {84+146 x+60 x^2+\left (-42-73 x-30 x^2\right ) \log \left (\frac {1}{31} (28+30 x)\right )+\left (-45 x-15 x^2\right ) \log \left (3 x+x^2\right )}{x \left (42+59 x+15 x^2\right )} \, dx\\ &=\int \left (-\frac {15 \log (x (3+x))}{14+15 x}-\frac {(3+2 x) \left (-2+\log \left (\frac {2}{31} (14+15 x)\right )\right )}{x (3+x)}\right ) \, dx\\ &=-\left (15 \int \frac {\log (x (3+x))}{14+15 x} \, dx\right )-\int \frac {(3+2 x) \left (-2+\log \left (\frac {2}{31} (14+15 x)\right )\right )}{x (3+x)} \, dx\\ &=-\log (x (3+x)) \log (14+15 x)-\int \left (\frac {-2+\log \left (\frac {2}{31} (14+15 x)\right )}{x}+\frac {-2+\log \left (\frac {2}{31} (14+15 x)\right )}{3+x}\right ) \, dx+\int \frac {\log (14+15 x)}{x} \, dx+\int \frac {\log (14+15 x)}{3+x} \, dx\\ &=\log (14) \log (x)+\log \left (\frac {15 (3+x)}{31}\right ) \log (14+15 x)-\log (x (3+x)) \log (14+15 x)-15 \int \frac {\log \left (\frac {15 (3+x)}{31}\right )}{14+15 x} \, dx+\int \frac {\log \left (1+\frac {15 x}{14}\right )}{x} \, dx-\int \frac {-2+\log \left (\frac {2}{31} (14+15 x)\right )}{x} \, dx-\int \frac {-2+\log \left (\frac {2}{31} (14+15 x)\right )}{3+x} \, dx\\ &=\left (2+\log \left (\frac {31}{28}\right )\right ) \log (x)+\log (14) \log (x)+\log \left (\frac {15 (3+x)}{31}\right ) \left (2-\log \left (\frac {2}{31} (14+15 x)\right )\right )+\log \left (\frac {15 (3+x)}{31}\right ) \log (14+15 x)-\log (x (3+x)) \log (14+15 x)-\text {Li}_2\left (-\frac {15 x}{14}\right )+15 \int \frac {\log \left (\frac {15 (3+x)}{31}\right )}{14+15 x} \, dx-\int \frac {\log \left (1+\frac {15 x}{14}\right )}{x} \, dx-\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{31}\right )}{x} \, dx,x,14+15 x\right )\\ &=\left (2+\log \left (\frac {31}{28}\right )\right ) \log (x)+\log (14) \log (x)+\log \left (\frac {15 (3+x)}{31}\right ) \left (2-\log \left (\frac {2}{31} (14+15 x)\right )\right )+\log \left (\frac {15 (3+x)}{31}\right ) \log (14+15 x)-\log (x (3+x)) \log (14+15 x)+\text {Li}_2\left (\frac {1}{31} (-14-15 x)\right )+\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{31}\right )}{x} \, dx,x,14+15 x\right )\\ &=\left (2+\log \left (\frac {31}{28}\right )\right ) \log (x)+\log (14) \log (x)+\log \left (\frac {15 (3+x)}{31}\right ) \left (2-\log \left (\frac {2}{31} (14+15 x)\right )\right )+\log \left (\frac {15 (3+x)}{31}\right ) \log (14+15 x)-\log (x (3+x)) \log (14+15 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 51, normalized size = 1.96 \begin {gather*} -\log \left (\frac {961}{225}\right )-\log \left (\frac {31}{15}\right ) \log \left (\frac {31}{2}\right )+\left (2+\log \left (\frac {31}{2}\right )\right ) \log (x)+\left (2+\log \left (\frac {31}{2}\right )\right ) \log (3+x)-\log (x (3+x)) \log (14+15 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 18, normalized size = 0.69 \begin {gather*} -{\left (\log \left (\frac {30}{31} \, x + \frac {28}{31}\right ) - 2\right )} \log \left (x^{2} + 3 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 41, normalized size = 1.58 \begin {gather*} -\log \left (x^{2} + 3 \, x\right ) \log \left (15 \, x + 14\right ) + {\left (\log \left (31\right ) - \log \relax (2) + 2\right )} \log \left (x + 3\right ) + {\left (\log \left (31\right ) - \log \relax (2) + 2\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 45, normalized size = 1.73
method | result | size |
default | \(\ln \left (31\right ) \ln \left (\left (3+x \right ) x \right )-\ln \left (15 x +14\right ) \ln \left (x^{2}+3 x \right )+2 \ln \left (\left (3+x \right ) x \right )-\ln \relax (2) \ln \left (\left (3+x \right ) x \right )\) | \(45\) |
risch | \(2 \ln \left (3+x \right )+2 \ln \relax (x )-\frac {i \pi \ln \left (15 x +14\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2}}{2}+\frac {i \pi \ln \left (15 x +14\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (3+x \right )\right ) \mathrm {csgn}\left (i \left (3+x \right )\right )}{2}+\frac {i \pi \ln \left (15 x +14\right ) \mathrm {csgn}\left (i x \left (3+x \right )\right )^{3}}{2}-\frac {i \pi \ln \left (15 x +14\right ) \mathrm {csgn}\left (i x \left (3+x \right )\right )^{2} \mathrm {csgn}\left (i \left (3+x \right )\right )}{2}-\ln \relax (x ) \ln \left (\frac {15 x}{14}+1\right )-\left (\ln \left (3+x \right )-\ln \left (\frac {15 x}{31}+\frac {45}{31}\right )\right ) \ln \left (-\frac {14}{31}-\frac {15 x}{31}\right )-\left (\ln \left (\frac {30 x}{31}+\frac {28}{31}\right )-\ln \left (\frac {15 x}{14}+1\right )\right ) \ln \left (-\frac {15 x}{14}\right )-\ln \left (\frac {30 x}{31}+\frac {28}{31}\right ) \ln \left (\frac {15 x}{31}+\frac {45}{31}\right )\) | \(180\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 65, normalized size = 2.50 \begin {gather*} -\frac {1}{31} \, {\left (31 \, \log \left (x + 3\right ) + 31 \, \log \relax (x) - 90\right )} \log \left (15 \, x + 14\right ) + \frac {1}{31} \, {\left (31 \, \log \left (31\right ) - 31 \, \log \relax (2) + 34\right )} \log \left (x + 3\right ) + {\left (\log \left (31\right ) - \log \relax (2)\right )} \log \relax (x) - \frac {90}{31} \, \log \left (15 \, x + 14\right ) + \frac {28}{31} \, \log \left (x + 3\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 18, normalized size = 0.69 \begin {gather*} -\ln \left (x^2+3\,x\right )\,\left (\ln \left (\frac {30\,x}{31}+\frac {28}{31}\right )-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 27, normalized size = 1.04 \begin {gather*} - \log {\left (\frac {30 x}{31} + \frac {28}{31} \right )} \log {\left (x^{2} + 3 x \right )} + 2 \log {\left (x^{2} + 3 x \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________