Optimal. Leaf size=22 \[ 4+3 e^{\frac {x^2}{\left (15+e^2\right )^2}}-x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6, 12, 2209} \begin {gather*} 3 e^{\frac {x^2}{\left (15+e^2\right )^2}}-x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 e^4 x+6 e^{\frac {x^2}{225+30 e^2+e^4}} x+\left (-450-60 e^2\right ) x}{225+30 e^2+e^4} \, dx\\ &=\int \frac {6 e^{\frac {x^2}{225+30 e^2+e^4}} x+\left (-450-60 e^2-2 e^4\right ) x}{225+30 e^2+e^4} \, dx\\ &=\frac {\int \left (6 e^{\frac {x^2}{225+30 e^2+e^4}} x+\left (-450-60 e^2-2 e^4\right ) x\right ) \, dx}{\left (15+e^2\right )^2}\\ &=-x^2+\frac {6 \int e^{\frac {x^2}{225+30 e^2+e^4}} x \, dx}{\left (15+e^2\right )^2}\\ &=3 e^{\frac {x^2}{\left (15+e^2\right )^2}}-x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.95 \begin {gather*} 3 e^{\frac {x^2}{\left (15+e^2\right )^2}}-x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 23, normalized size = 1.05 \begin {gather*} -x^{2} + 3 \, e^{\left (\frac {x^{2}}{e^{4} + 30 \, e^{2} + 225}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 56, normalized size = 2.55 \begin {gather*} -\frac {x^{2} e^{4} + 30 \, x^{2} e^{2} + 225 \, x^{2} - 3 \, {\left (e^{4} + 30 \, e^{2} + 225\right )} e^{\left (\frac {x^{2}}{e^{4} + 30 \, e^{2} + 225}\right )}}{e^{4} + 30 \, e^{2} + 225} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 43, normalized size = 1.95
method | result | size |
norman | \(\frac {\left (-{\mathrm e}^{2}-15\right ) x^{2}+\left (3 \,{\mathrm e}^{2}+45\right ) {\mathrm e}^{\frac {x^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}}}{{\mathrm e}^{2}+15}\) | \(43\) |
default | \(\frac {-225 x^{2}-x^{2} {\mathrm e}^{4}+6 \left (\frac {{\mathrm e}^{4}}{2}+15 \,{\mathrm e}^{2}+\frac {225}{2}\right ) {\mathrm e}^{\frac {x^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}}-30 x^{2} {\mathrm e}^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}\) | \(68\) |
risch | \(-x^{2}+\frac {3 \,{\mathrm e}^{\frac {x^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}} {\mathrm e}^{4}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}+\frac {90 \,{\mathrm e}^{\frac {x^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}} {\mathrm e}^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}+\frac {675 \,{\mathrm e}^{\frac {x^{2}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}}}{{\mathrm e}^{4}+30 \,{\mathrm e}^{2}+225}\) | \(92\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 56, normalized size = 2.55 \begin {gather*} -\frac {x^{2} e^{4} + 30 \, x^{2} e^{2} + 225 \, x^{2} - 3 \, {\left (e^{4} + 30 \, e^{2} + 225\right )} e^{\left (\frac {x^{2}}{e^{4} + 30 \, e^{2} + 225}\right )}}{e^{4} + 30 \, e^{2} + 225} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 23, normalized size = 1.05 \begin {gather*} 3\,{\mathrm {e}}^{\frac {x^2}{30\,{\mathrm {e}}^2+{\mathrm {e}}^4+225}}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.86 \begin {gather*} - x^{2} + 3 e^{\frac {x^{2}}{e^{4} + 30 e^{2} + 225}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________