Optimal. Leaf size=19 \[ e^x \left (e^{e^{e^x} x^{5/4}}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.96, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {2288} \begin {gather*} e^x \left (e^{e^{e^x} x^{5/4}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int e^{x^4} x^3 \left (4+4 e^{e^{e^{x^4}} x^5}+5 e^{e^{x^4}+e^{e^{x^4}} x^5} x+4 x^4+4 e^{e^{x^4}+x^4+e^{e^{x^4}} x^5} x^5\right ) \, dx,x,\sqrt [4]{x}\right )\\ &=e^x \left (e^{e^{e^x} x^{5/4}}+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 19, normalized size = 1.00 \begin {gather*} e^x \left (e^{e^{e^x} x^{5/4}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 15, normalized size = 0.79 \begin {gather*} x e^{x} + e^{\left (x^{\frac {5}{4}} e^{\left (e^{x}\right )} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left ({\left (4 \, x e^{x} + 5\right )} x^{\frac {1}{4}} e^{\left (e^{x}\right )} + 4\right )} e^{\left (x^{\frac {5}{4}} e^{\left (e^{x}\right )}\right )} + 4 \, x + 4\right )} e^{\left (x + \log \left (x + e^{\left (x^{\frac {5}{4}} e^{\left (e^{x}\right )}\right )}\right )\right )}}{4 \, {\left (x + e^{\left (x^{\frac {5}{4}} e^{\left (e^{x}\right )}\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (\left (4 \,{\mathrm e}^{x} x +5\right ) {\mathrm e}^{{\mathrm e}^{x}} x^{\frac {1}{4}}+4\right ) {\mathrm e}^{x^{\frac {5}{4}} {\mathrm e}^{{\mathrm e}^{x}}}+4 x +4\right ) {\mathrm e}^{\ln \left ({\mathrm e}^{x^{\frac {5}{4}} {\mathrm e}^{{\mathrm e}^{x}}}+x \right )+x}}{4 \,{\mathrm e}^{x^{\frac {5}{4}} {\mathrm e}^{{\mathrm e}^{x}}}+4 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 19, normalized size = 1.00 \begin {gather*} {\left (x - 1\right )} e^{x} + e^{\left (x^{\frac {5}{4}} e^{\left (e^{x}\right )} + x\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^{x+\ln \left (x+{\mathrm {e}}^{x^{5/4}\,{\mathrm {e}}^{{\mathrm {e}}^x}}\right )}\,\left (4\,x+{\mathrm {e}}^{x^{5/4}\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,\left (x^{1/4}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (4\,x\,{\mathrm {e}}^x+5\right )+4\right )+4\right )}{4\,x+4\,{\mathrm {e}}^{x^{5/4}\,{\mathrm {e}}^{{\mathrm {e}}^x}}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________