Optimal. Leaf size=24 \[ 2+\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 16, number of rules used = 8, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.178, Rules used = {6742, 6688, 14, 43, 2309, 2178, 30, 2555} \begin {gather*} \frac {5 \log \left (-\frac {e^{x-2} \log (5) \log (4 x)}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 30
Rule 43
Rule 2178
Rule 2309
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 (1-\log (4 x)+x \log (4 x))}{x^2 \log (4 x)}-\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x^2}\right ) \, dx\\ &=5 \int \frac {1-\log (4 x)+x \log (4 x)}{x^2 \log (4 x)} \, dx-5 \int \frac {\log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x^2} \, dx\\ &=\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x}+5 \int \frac {-1+x+\frac {1}{\log (4 x)}}{x^2} \, dx+5 \int \frac {-1-(-1+x) \log (4 x)}{x^2 \log (4 x)} \, dx\\ &=\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x}+5 \int \left (\frac {1-x}{x^2}-\frac {1}{x^2 \log (4 x)}\right ) \, dx+5 \int \left (\frac {-1+x}{x^2}+\frac {1}{x^2 \log (4 x)}\right ) \, dx\\ &=\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x}+5 \int \frac {1-x}{x^2} \, dx+5 \int \frac {-1+x}{x^2} \, dx\\ &=\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x}+5 \int \left (\frac {1}{x^2}-\frac {1}{x}\right ) \, dx+5 \int \left (-\frac {1}{x^2}+\frac {1}{x}\right ) \, dx\\ &=\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 1.00 \begin {gather*} -5+\frac {5 \log \left (-\frac {e^{-2+x} \log (5) \log (4 x)}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 21, normalized size = 0.88 \begin {gather*} \frac {5 \, \log \left (-\frac {e^{\left (x - 2\right )} \log \relax (5) \log \left (4 \, x\right )}{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 33, normalized size = 1.38 \begin {gather*} \frac {5 \, {\left (\log \left (\log \relax (5)\right ) - 2\right )}}{x} - \frac {5 \, \log \relax (x)}{x} + \frac {5 \, \log \left (-2 \, \log \relax (2) - \log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {-5 \ln \left (4 x \right ) \ln \left (-\frac {\ln \relax (5) \ln \left (4 x \right ) {\mathrm e}^{x -2}}{x}\right )+\left (5 x -5\right ) \ln \left (4 x \right )+5}{x^{2} \ln \left (4 x \right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {5 \, {\left ({\left (x + 1\right )} \log \relax (x) - \log \left (-2 \, \log \relax (2) - \log \relax (x)\right ) - \log \left (\log \relax (5)\right ) + 3\right )}}{x} + \frac {5}{x} + 20 \, {\rm Ei}\left (-\log \left (4 \, x\right )\right ) - 5 \, \int \frac {1}{2 \, x^{2} \log \relax (2) + x^{2} \log \relax (x)}\,{d x} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.69, size = 20, normalized size = 0.83 \begin {gather*} \frac {5\,\ln \left (-\frac {\ln \left (4\,x\right )\,\ln \relax (5)}{x}\right )-10}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 20, normalized size = 0.83 \begin {gather*} \frac {5 \log {\left (- \frac {e^{x - 2} \log {\relax (5 )} \log {\left (4 x \right )}}{x} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________