Optimal. Leaf size=26 \[ \log \left (\frac {5 \left (\frac {1}{x}+x\right )}{(-3+x) x^2 \left (5+e^{3+x}+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {45-8 x+10 x^2-4 x^3-3 x^4+e^{3+x} \left (9-x+2 x^2+x^3-x^4\right )}{-15 x+2 x^2-14 x^3+2 x^4+x^5+e^{3+x} \left (-3 x+x^2-3 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-45+8 x-10 x^2+4 x^3+3 x^4-e^{3+x} \left (9-x+2 x^2+x^3-x^4\right )}{x \left (5+e^{3+x}+x\right ) \left (3-x+3 x^2-x^3\right )} \, dx\\ &=\int \left (\frac {4+x}{5+e^{3+x}+x}+\frac {9-x+2 x^2+x^3-x^4}{(-3+x) x \left (1+x^2\right )}\right ) \, dx\\ &=\int \frac {4+x}{5+e^{3+x}+x} \, dx+\int \frac {9-x+2 x^2+x^3-x^4}{(-3+x) x \left (1+x^2\right )} \, dx\\ &=\int \left (\frac {4}{5+e^{3+x}+x}+\frac {x}{5+e^{3+x}+x}\right ) \, dx+\int \left (-1+\frac {1}{3-x}-\frac {3}{x}+\frac {2 x}{1+x^2}\right ) \, dx\\ &=-x-\log (3-x)-3 \log (x)+2 \int \frac {x}{1+x^2} \, dx+4 \int \frac {1}{5+e^{3+x}+x} \, dx+\int \frac {x}{5+e^{3+x}+x} \, dx\\ &=-x-\log (3-x)-3 \log (x)+\log \left (1+x^2\right )+4 \int \frac {1}{5+e^{3+x}+x} \, dx+\int \frac {x}{5+e^{3+x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 30, normalized size = 1.15 \begin {gather*} -\log (3-x)-3 \log (x)-\log \left (5+e^{3+x}+x\right )+\log \left (1+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 27, normalized size = 1.04 \begin {gather*} \log \left (x^{2} + 1\right ) - \log \left (x + e^{\left (x + 3\right )} + 5\right ) - \log \left (x - 3\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 27, normalized size = 1.04 \begin {gather*} \log \left (x^{2} + 1\right ) - \log \left (x + e^{\left (x + 3\right )} + 5\right ) - \log \left (x - 3\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 28, normalized size = 1.08
method | result | size |
norman | \(-3 \ln \relax (x )-\ln \left (x -3\right )-\ln \left ({\mathrm e}^{3+x}+x +5\right )+\ln \left (x^{2}+1\right )\) | \(28\) |
risch | \(-\ln \left (x -3\right )-3 \ln \relax (x )+\ln \left (x^{2}+1\right )+3-\ln \left ({\mathrm e}^{3+x}+x +5\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 30, normalized size = 1.15 \begin {gather*} \log \left (x^{2} + 1\right ) - \log \left ({\left (x + e^{\left (x + 3\right )} + 5\right )} e^{\left (-3\right )}\right ) - \log \left (x - 3\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 27, normalized size = 1.04 \begin {gather*} \ln \left (x^2+1\right )-\ln \left (x+{\mathrm {e}}^{x+3}+5\right )-\ln \left (x-3\right )-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 1.00 \begin {gather*} - 3 \log {\relax (x )} - \log {\left (x - 3 \right )} + \log {\left (x^{2} + 1 \right )} - \log {\left (x + e^{x + 3} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________